These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8106505)

  • 1. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions.
    Akiyama Y; Shirai Y; Ito K
    J Biol Chem; 1994 Feb; 269(7):5225-9. PubMed ID: 8106505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter.
    Akiyama Y; Ogura T; Ito K
    J Biol Chem; 1994 Feb; 269(7):5218-24. PubMed ID: 8106504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new Escherichia coli gene, fdrA, identified by suppression analysis of dominant negative FtsH mutations.
    Akiyama Y; Ito K
    Mol Gen Genet; 1995 Nov; 249(2):202-8. PubMed ID: 7500942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli.
    Akiyama Y; Yoshihisa T; Ito K
    J Biol Chem; 1995 Oct; 270(40):23485-90. PubMed ID: 7559511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins.
    Akiyama Y; Kihara A; Tokuda H; Ito K
    J Biol Chem; 1996 Dec; 271(49):31196-201. PubMed ID: 8940120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit.
    Kihara A; Akiyama Y; Ito K
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4532-6. PubMed ID: 7753838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression.
    Tomoyasu T; Yuki T; Morimura S; Mori H; Yamanaka K; Niki H; Hiraga S; Ogura T
    J Bacteriol; 1993 Mar; 175(5):1344-51. PubMed ID: 8444796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation.
    Akiyama Y; Kihara A; Mori H; Ogura T; Ito K
    J Biol Chem; 1998 Aug; 273(35):22326-33. PubMed ID: 9712851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dislocation of membrane proteins in FtsH-mediated proteolysis.
    Kihara A; Akiyama Y; Ito K
    EMBO J; 1999 Jun; 18(11):2970-81. PubMed ID: 10357810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones.
    Shirai Y; Akiyama Y; Ito K
    J Bacteriol; 1996 Feb; 178(4):1141-5. PubMed ID: 8576050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32.
    Tomoyasu T; Gamer J; Bukau B; Kanemori M; Mori H; Rutman AJ; Oppenheim AB; Yura T; Yamanaka K; Niki H
    EMBO J; 1995 Jun; 14(11):2551-60. PubMed ID: 7781608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH.
    Karata K; Inagawa T; Wilkinson AJ; Tatsuta T; Ogura T
    J Biol Chem; 1999 Sep; 274(37):26225-32. PubMed ID: 10473576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topology and subcellular localization of FtsH protein in Escherichia coli.
    Tomoyasu T; Yamanaka K; Murata K; Suzaki T; Bouloc P; Kato A; Niki H; Hiraga S; Ogura T
    J Bacteriol; 1993 Mar; 175(5):1352-7. PubMed ID: 8444797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB).
    Akiyama Y; Ito K
    EMBO J; 2000 Aug; 19(15):3888-95. PubMed ID: 10921871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-processing of FtsH and its implication for the cleavage specificity of this protease.
    Akiyama Y
    Biochemistry; 1999 Sep; 38(36):11693-9. PubMed ID: 10512625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product.
    Nilsson D; Lauridsen AA; Tomoyasu T; Ogura T
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2601-10. PubMed ID: 8000529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FtsH--a single-chain charonin?
    Schumann W
    FEMS Microbiol Rev; 1999 Jan; 23(1):1-11. PubMed ID: 10077851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA.
    Kihara A; Akiyama Y; Ito K
    J Mol Biol; 1998 May; 279(1):175-88. PubMed ID: 9636708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues.
    Asahara Y; Atsuta K; Motohashi K; Taguchi H; Yohda M; Yoshida M
    J Biochem; 2000 May; 127(5):931-7. PubMed ID: 10788805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis.
    Yamada-Inagawa T; Okuno T; Karata K; Yamanaka K; Ogura T
    J Biol Chem; 2003 Dec; 278(50):50182-7. PubMed ID: 14514680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.