These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8106536)

  • 1. Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials.
    Zhu M; Keller TS; Spengler DM
    J Biomech; 1994 Jan; 27(1):57-66. PubMed ID: 8106536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone.
    Patel PS; Shepherd DE; Hukins DW
    BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The underestimation of Young's modulus in compressive testing of cancellous bone specimens.
    Odgaard A; Linde F
    J Biomech; 1991; 24(8):691-8. PubMed ID: 1918092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the prediction of Young's modulus in calcaneal cancellous bone by ultrasonic bulk and bar velocity measurements.
    Nicholson PH; Strelitzki R
    Clin Rheumatol; 1999; 18(1):10-6. PubMed ID: 10088942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the compressive mechanical behavior of bone.
    Keller TS
    J Biomech; 1994 Sep; 27(9):1159-68. PubMed ID: 7929465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and material mechanical properties of human vertebral cancellous bone.
    Nicholson PH; Cheng XG; Lowet G; Boonen S; Davie MW; Dequeker J; Van der Perre G
    Med Eng Phys; 1997 Dec; 19(8):729-37. PubMed ID: 9450257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive and shear properties of commercially available polyurethane foams.
    Thompson MS; McCarthy ID; Lidgren L; Ryd L
    J Biomech Eng; 2003 Oct; 125(5):732-4. PubMed ID: 14618933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations.
    Bouzakis KD; Mitsi S; Michailidis N; Mirisidis I; Mesomeris G; Maliaris G; Korlos A; Kapetanos G; Antonarakos P; Anagnostidis K
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):152-8. PubMed ID: 15615116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of femoral trabecular bone in dogs.
    Pressel T; Bouguecha A; Vogt U; Meyer-Lindenberg A; Behrens BA; Nolte I; Windhagen H
    Biomed Eng Online; 2005 Mar; 4():17. PubMed ID: 15774014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens.
    Linde F; Hvid I; Madsen F
    J Biomech; 1992 Apr; 25(4):359-68. PubMed ID: 1583015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The apparent increase of the Young's modulus in thin cement layers.
    De Jager N; Pallav P; Feilzer AJ
    Dent Mater; 2004 Jun; 20(5):457-62. PubMed ID: 15081552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading.
    Natarajan RN; Andersson GB
    Spine (Phila Pa 1976); 1999 Sep; 24(18):1873-81. PubMed ID: 10515010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Young's modulus repeatability assessment using cycling compression loading on cancellous bone.
    Guérard S; Chevalier Y; Moreschi H; Defontaine M; Callé S; Mitton D
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1113-7. PubMed ID: 22292210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus.
    Choi K; Kuhn JL; Ciarelli MJ; Goldstein SA
    J Biomech; 1990; 23(11):1103-13. PubMed ID: 2277045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specimen diameter and "side artifacts" in cancellous bone evaluated using end-constrained elastic tension.
    Lievers WB; Petryshyn AC; Poljsak AS; Waldman SD; Pilkey AK
    Bone; 2010 Aug; 47(2):371-7. PubMed ID: 20380901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of filler materials used for uniform load distribution at boundaries during structural biomechanical testing of whole vertebrae.
    Kim DG; Dong XN; Cao T; Baker KC; Shaffer RR; Fyhrie DP; Yeni YN
    J Biomech Eng; 2006 Feb; 128(1):161-5. PubMed ID: 16532630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.