These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8106817)

  • 1. Influence of three alloplastic materials on calvarial bone healing. An experimental evaluation of HTR-polymer, lactomer beads, and a carrier gel.
    Isaksson S; Alberius P; Klinge B
    Int J Oral Maxillofac Surg; 1993 Dec; 22(6):375-81. PubMed ID: 8106817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspects of bone healing and bone substitute incorporation. An experimental study in rabbit skull bone defects.
    Isaksson S
    Swed Dent J Suppl; 1992; 84():1-46. PubMed ID: 1334579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerative response to membranous and enchondral lyophilized allogeneic bone in rabbit skull defects.
    Isaksson S; Alberius P; Klinge B; Jönsson J; Hallberg E; Wendel M
    Scand J Plast Reconstr Surg Hand Surg; 1992; 26(2):147-53. PubMed ID: 1411341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hard tissue replacement (HTR) polymer as an implant material.
    Amler MH; LeGeros RZ
    J Biomed Mater Res; 1990 Aug; 24(8):1079-89. PubMed ID: 2394764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced healing of large cranial defects by an osteoinductive protein in rabbits.
    Turk AE; Ishida K; Jensen JA; Wollman JS; Miller TA
    Plast Reconstr Surg; 1993 Sep; 92(4):593-600; discussion 601-2. PubMed ID: 8395062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of critical size rat calvarial defects using extracellular matrix protein gels.
    Sweeney TM; Opperman LA; Persing JA; Ogle RC
    J Neurosurg; 1995 Oct; 83(4):710-5. PubMed ID: 7545744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of HTR polymer as a craniomaxillofacial graft material.
    Eppley BL; Sadove AM; German RZ
    Plast Reconstr Surg; 1990 Dec; 86(6):1085-92. PubMed ID: 2243850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ultrastructural architecture of the tissue/hard-tissue replacement interface.
    Pearsall AD; Spears R; Chokshi M
    J Oral Maxillofac Surg; 1992 Apr; 50(4):375-84; discussion 384-5. PubMed ID: 1545293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HTR polymer grafts in human periodontal osseous defects. I. 6-month clinical results.
    Yukna RA
    J Periodontol; 1990 Oct; 61(10):633-42. PubMed ID: 2231230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of regenerative capacity elicited by demineralized bone matrix of different embryonic origins.
    Isaksson S; Alberius P
    J Craniomaxillofac Surg; 1992; 20(2):73-80. PubMed ID: 1569218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of bone healing by transforming growth factor-beta 1 released from polymeric or ceramic implants.
    Gombotz WR; Pankey SC; Bouchard LS; Phan DH; Puolakkainen PA
    J Appl Biomater; 1994; 5(2):141-50. PubMed ID: 10172073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects.
    Humber CC; Sándor GK; Davis JM; Peel SA; Brkovic BM; Kim YD; Holmes HI; Clokie CM
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):372-84. PubMed ID: 20060340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histomorphometric evaluation of bone regeneration using allogeneic and alloplastic bone substitutes.
    Moghadam HG; Sándor GK; Holmes HH; Clokie CM
    J Oral Maxillofac Surg; 2004 Feb; 62(2):202-13. PubMed ID: 14762753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of autogeneic membranous bone chips and bone paste to healing of rabbit skull defects.
    Isaksson S; Alberius P; Klinge B; Jönsson J
    Scand J Dent Res; 1992 Oct; 100(5):274-8. PubMed ID: 1411270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs.
    Lemperle SM; Calhoun CJ; Curran RW; Holmes RE
    Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects.
    Klinge B; Alberius P; Isaksson S; Jönsson J
    J Oral Maxillofac Surg; 1992 Mar; 50(3):241-9. PubMed ID: 1311759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cranioplasty Using a Novel Osteoconductive Scaffold and Platelet Gel.
    Tseng CL; Chang GW; Ou KL; Chou WT; Wu TH; Fang HW; Tsai JC; Chen TM
    Ann Plast Surg; 2016 Mar; 76 Suppl 1():S125-9. PubMed ID: 26808739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Bone Regeneration on Polyhydroxyethyl-polymethyl Methacrylate Membrane in a Rabbit Calvarial Defect Model.
    Kim S; Hwang Y; Kashif M; Jeong D; Kim G
    In Vivo; 2016 09-10; 30(5):587-91. PubMed ID: 27566076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficacy of various alloplastic bone grafts on the healing of rat calvarial defects.
    Mah J; Hung J; Wang J; Salih E
    Eur J Orthod; 2004 Oct; 26(5):475-82. PubMed ID: 15536835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental implantation of hydrogel into the bone.
    Korbelár P; Vacík J; Dylevský I
    J Biomed Mater Res; 1988 Sep; 22(9):751-62. PubMed ID: 3220843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.