These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8106911)

  • 1. Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression.
    Artal P; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 1994 Jan; 11(1):246-9. PubMed ID: 8106911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MTF of the defocused optical system of the human eye for incoherent monochromatic light.
    Bour LJ
    J Opt Soc Am; 1980 Mar; 70(3):321-8. PubMed ID: 7365567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-pass and interferometric measures of the optical quality of the eye.
    Williams DR; Brainard DH; McMahon MJ; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 1994 Dec; 11(12):3123-35. PubMed ID: 7837000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Average optical performance of the human eye as a function of age in a normal population.
    Guirao A; González C; Redondo M; Geraghty E; Norrby S; Artal P
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):203-13. PubMed ID: 9888445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye's optical system.
    Artal P; Iglesias I; López-Gil N; Green DG
    J Opt Soc Am A Opt Image Sci Vis; 1995 Oct; 12(10):2358-66. PubMed ID: 7500217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of aging on the monochromatic aberrations of the human eye.
    Calver RI; Cox MJ; Elliott DB
    J Opt Soc Am A Opt Image Sci Vis; 1999 Sep; 16(9):2069-78. PubMed ID: 10474888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postblink changes in the ocular modulation transfer function measured by a double-pass method.
    Montés-Micó R; Alió JL; Charman WN
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4468-73. PubMed ID: 16303935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image quality of the human eye for eccentric entrance pupils.
    van Meeteren A; Dunnewold CJ
    Vision Res; 1983; 23(5):573-9. PubMed ID: 6880055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple parametric model of the human ocular modulation transfer function.
    Deeley RJ; Drasdo N; Charman WN
    Ophthalmic Physiol Opt; 1991 Jan; 11(1):91-3. PubMed ID: 2034461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrations and retinal image quality of the normal human eye.
    Liang J; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 1997 Nov; 14(11):2873-83. PubMed ID: 9379245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical quality of the living cat eye.
    Bonds AB
    J Physiol; 1974 Dec; 243(3):777-95. PubMed ID: 4449081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transfer and point-spread function of the human eye determined by a new asymmetric double-pass method.
    Navarro R; Losada MA
    J Opt Soc Am A Opt Image Sci Vis; 1995 Nov; 12(11):2385-92. PubMed ID: 7494153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation transfer of the human eye as a function of retinal eccentricity.
    Navarro R; Artal P; Williams DR
    J Opt Soc Am A; 1993 Feb; 10(2):201-12. PubMed ID: 8478746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal image quality in the rodent eye.
    Artal P; Herreros de Tejada P; Muñoz Tedó C; Green DG
    Vis Neurosci; 1998; 15(4):597-605. PubMed ID: 9682864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye.
    Artal P; Marcos S; Iglesias I; Green DG
    Vision Res; 1996 Nov; 36(22):3575-86. PubMed ID: 8976989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes.
    Guirao A; Porter J; Williams DR; Cox IG
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):1-9. PubMed ID: 11778709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye.
    Roorda A; Campbell MC; Bobier WR
    J Opt Soc Am A Opt Image Sci Vis; 1995 Aug; 12(8):1647-56. PubMed ID: 7674062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes.
    Guirao A; Porter J; Williams DR; Cox IG
    J Opt Soc Am A Opt Image Sci Vis; 2002 Mar; 19(3):620-8. PubMed ID: 11876329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective technique for the determination of monochromatic aberrations of the human eye.
    Walsh G; Charman WN; Howland HC
    J Opt Soc Am A; 1984 Sep; 1(9):987-92. PubMed ID: 6481506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation.
    IJspeert JK; van den Berg TJ; Spekreijse H
    Vision Res; 1993 Jan; 33(1):15-20. PubMed ID: 8451840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.