These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 8107111)
41. Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Garrett DS; Seok YJ; Liao DI; Peterkofsky A; Gronenborn AM; Clore GM Biochemistry; 1997 Mar; 36(9):2517-30. PubMed ID: 9054557 [TBL] [Abstract][Full Text] [Related]
42. The BG21 isoform of Golli myelin basic protein is intrinsically disordered with a highly flexible amino-terminal domain. Ahmed MA; Bamm VV; Harauz G; Ladizhansky V Biochemistry; 2007 Aug; 46(34):9700-12. PubMed ID: 17676872 [TBL] [Abstract][Full Text] [Related]
43. 1H NMR studies of peptide fragments from the N-terminus of chicken and human transthyretin. Wilce JA; Craik DJ; Ede N; Jackson DC; Schreiber G Biochem Mol Biol Int; 1995 Aug; 36(6):1153-9. PubMed ID: 8535286 [TBL] [Abstract][Full Text] [Related]
44. Three-dimensional structures of the amyloid beta peptide (25-35) in membrane-mimicking environment. Kohno T; Kobayashi K; Maeda T; Sato K; Takashima A Biochemistry; 1996 Dec; 35(50):16094-104. PubMed ID: 8973180 [TBL] [Abstract][Full Text] [Related]
45. Crystallographic structure of an intact IgG1 monoclonal antibody. Harris LJ; Skaletsky E; McPherson A J Mol Biol; 1998 Feb; 275(5):861-72. PubMed ID: 9480774 [TBL] [Abstract][Full Text] [Related]
46. Solution structures of apo and holo biotinyl domains from acetyl coenzyme A carboxylase of Escherichia coli determined by triple-resonance nuclear magnetic resonance spectroscopy. Roberts EL; Shu N; Howard MJ; Broadhurst RW; Chapman-Smith A; Wallace JC; Morris T; Cronan JE; Perham RN Biochemistry; 1999 Apr; 38(16):5045-53. PubMed ID: 10213607 [TBL] [Abstract][Full Text] [Related]
47. NMR solution structure of alpha-conotoxin ImI and comparison to other conotoxins specific for neuronal nicotinic acetylcholine receptors. Rogers JP; Luginbühl P; Shen GS; McCabe RT; Stevens RC; Wemmer DE Biochemistry; 1999 Mar; 38(13):3874-82. PubMed ID: 10194298 [TBL] [Abstract][Full Text] [Related]
48. NMR study of the interaction between the B domain of staphylococcal protein A and the Fc portion of immunoglobulin G. Gouda H; Shiraishi M; Takahashi H; Kato K; Torigoe H; Arata Y; Shimada I Biochemistry; 1998 Jan; 37(1):129-36. PubMed ID: 9425032 [TBL] [Abstract][Full Text] [Related]
49. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Greenfield NJ; Montelione GT; Farid RS; Hitchcock-DeGregori SE Biochemistry; 1998 May; 37(21):7834-43. PubMed ID: 9601044 [TBL] [Abstract][Full Text] [Related]
50. A new ligand for immunoglobulin g subdomains by screening of a synthetic peptide library. Verdoliva A; Marasco D; De Capua A; Saporito A; Bellofiore P; Manfredi V; Fattorusso R; Pedone C; Ruvo M Chembiochem; 2005 Jul; 6(7):1242-53. PubMed ID: 15937987 [TBL] [Abstract][Full Text] [Related]
51. Structural dynamics of the membrane translocation domain of colicin E9 and its interaction with TolB. Collins ES; Whittaker SB; Tozawa K; MacDonald C; Boetzel R; Penfold CN; Reilly A; Clayden NJ; Osborne MJ; Hemmings AM; Kleanthous C; James R; Moore GR J Mol Biol; 2002 May; 318(3):787-804. PubMed ID: 12054823 [TBL] [Abstract][Full Text] [Related]
52. 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR. Afonin S; Dürr UH; Glaser RW; Ulrich AS Magn Reson Chem; 2004 Feb; 42(2):195-203. PubMed ID: 14745800 [TBL] [Abstract][Full Text] [Related]
53. Solution structure and dynamics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear magnetic resonance spectroscopy. Liepinsh E; Berndt KD; Sillard R; Mutt V; Otting G J Mol Biol; 1994 May; 239(1):137-53. PubMed ID: 8196042 [TBL] [Abstract][Full Text] [Related]
54. Structure and specificity of an antibody targeting a proteolytically cleaved IgG hinge. Malia TJ; Teplyakov A; Brezski RJ; Luo J; Kinder M; Sweet RW; Almagro JC; Jordan RE; Gilliland GL Proteins; 2014 Aug; 82(8):1656-67. PubMed ID: 24638881 [TBL] [Abstract][Full Text] [Related]
55. Complete assignment of the methionyl carbonyl carbon resonances in switch variant anti-dansyl antibodies labeled with [1-13C]methionine. Kato K; Matsunaga C; Igarashi T; Kim H; Odaka A; Shimada I; Arata Y Biochemistry; 1991 Jan; 30(1):270-8. PubMed ID: 1899019 [TBL] [Abstract][Full Text] [Related]
56. Multinuclear NMR study of the structure of the Fv fragment of anti-dansyl mouse IgG2a antibody. Takahashi H; Odaka A; Kawaminami S; Matsunaga C; Kato K; Shimada I; Arata Y Biochemistry; 1991 Jul; 30(26):6611-9. PubMed ID: 2054359 [TBL] [Abstract][Full Text] [Related]
57. O-glycosylation in hinge region of mouse immunoglobulin G2b. Kim H; Yamaguchi Y; Masuda K; Matsunaga C; Yamamoto K; Irimura T; Takahashi N; Kato K; Arata Y J Biol Chem; 1994 Apr; 269(16):12345-50. PubMed ID: 7512967 [TBL] [Abstract][Full Text] [Related]
58. [1H-NMR study of the peptide corresponding to the ACTH-like sequence of the variable region of human G1 Eu heavy chain immunoglobin]. Kutyshenko VP; Khristoforov VS; Zav'ialov VP Biofizika; 1986; 31(6):958-60. PubMed ID: 3026497 [TBL] [Abstract][Full Text] [Related]
59. Carbon-13 NMR study of switch variant anti-dansyl antibodies: antigen binding and domain-domain interactions. Kato K; Matsunaga C; Odaka A; Yamato S; Takaha W; Shimada I; Arata Y Biochemistry; 1991 Jul; 30(26):6604-10. PubMed ID: 2054358 [TBL] [Abstract][Full Text] [Related]
60. Proteolytic fragmentation with high specificity of mouse immunoglobulin G. Mapping of proteolytic cleavage sites in the hinge region. Yamaguchi Y; Kim H; Kato K; Masuda K; Shimada I; Arata Y J Immunol Methods; 1995 Apr; 181(2):259-67. PubMed ID: 7745255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]