These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 8107125)

  • 1. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain.
    Murphy FL; Cech TR
    J Mol Biol; 1994 Feb; 236(1):49-63. PubMed ID: 8107125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme.
    Murphy FL; Cech TR
    Biochemistry; 1993 May; 32(20):5291-300. PubMed ID: 7684607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core.
    Doherty EA; Doudna JA
    Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core.
    Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence effects on RNA bulge-induced helix bending and a conserved five-nucleotide bulge from the group I introns.
    Luebke KJ; Tinoco I
    Biochemistry; 1996 Sep; 35(36):11677-84. PubMed ID: 8794748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection.
    Saldanha R; Ellington A; Lambowitz AM
    J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches.
    RĂ¼disser S; Tinoco I
    J Mol Biol; 2000 Feb; 295(5):1211-23. PubMed ID: 10653698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution conformation of a five-nucleotide RNA bulge loop from a group I intron.
    Luebke KJ; Landry SM; Tinoco I
    Biochemistry; 1997 Aug; 36(33):10246-55. PubMed ID: 9254623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure.
    Shcherbakova I; Brenowitz M
    J Mol Biol; 2005 Nov; 354(2):483-96. PubMed ID: 16242711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of a tertiary structural domain of the Tetrahymena group I intron by electron microscopy.
    Wang YH; Murphy FL; Cech TR; Griffith JD
    J Mol Biol; 1994 Feb; 236(1):64-71. PubMed ID: 7508985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions.
    Caprara MG; Myers CA; Lambowitz AM
    J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of an exceptionally stable RNA tertiary interface in a group I ribozyme.
    Doherty EA; Herschlag D; Doudna JA
    Biochemistry; 1999 Mar; 38(10):2982-90. PubMed ID: 10074350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix.
    Pley HW; Flaherty KM; McKay DB
    Nature; 1994 Nov; 372(6501):111-3. PubMed ID: 7526219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM; Murphy FL; Cech TR
    Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic stability of the P4-P6 domain RNA tertiary structure measured by temperature gradient gel electrophoresis.
    Szewczak AA; Podell ER; Bevilacqua PC; Cech TR
    Biochemistry; 1998 Aug; 37(32):11162-70. PubMed ID: 9698362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform.
    Amarasinghe GK; De Guzman RN; Turner RB; Summers MF
    J Mol Biol; 2000 May; 299(1):145-56. PubMed ID: 10860728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A small structural element, Pc-J5/5a, plays dual roles in a group IC1 intron RNA.
    Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2000 Jul; 274(1):259-65. PubMed ID: 10903928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An RNA internal loop acts as a hinge to facilitate ribozyme folding and catalysis.
    Szewczak AA; Cech TR
    RNA; 1997 Aug; 3(8):838-49. PubMed ID: 9257643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.