These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8107494)

  • 1. Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes.
    Gross GW; Rhoades BK; Reust DL; Schwalm FU
    J Neurosci Methods; 1993 Nov; 50(2):131-43. PubMed ID: 8107494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures.
    Gross GW; Wen WY; Lin JW
    J Neurosci Methods; 1985; 15(3):243-52. PubMed ID: 4094480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion conducting polymer microelectrodes for interfacing with neural networks.
    Nyberg T; Shimada A; Torimitsu K
    J Neurosci Methods; 2007 Feb; 160(1):16-25. PubMed ID: 17000006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical stimulation of cultured neurons using a simply patterned indium-tin-oxide (ITO) glass electrode.
    Tanamoto R; Shindo Y; Miki N; Matsumoto Y; Hotta K; Oka K
    J Neurosci Methods; 2015 Sep; 253():272-8. PubMed ID: 26185873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes.
    Choi CK; English AE; Jun SI; Kihm KD; Rack PD
    Biosens Bioelectron; 2007 May; 22(11):2585-90. PubMed ID: 17113768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms controlling bursting activity induced by disinhibition in spinal cord networks.
    Darbon P; Scicluna L; Tscherter A; Streit J
    Eur J Neurosci; 2002 Feb; 15(4):671-83. PubMed ID: 11886448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting connectivity changes in neuronal networks.
    Berry T; Hamilton F; Peixoto N; Sauer T
    J Neurosci Methods; 2012 Aug; 209(2):388-97. PubMed ID: 22771714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks.
    Poli D; Thiagarajan S; DeMarse TB; Wheeler BC; Brewer GJ
    Front Neural Circuits; 2017; 11():13. PubMed ID: 28321182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation with a low-amplitude, digitized synaptic signal to invoke robust activity within neuronal networks on multielectrode arrays.
    Zemianek JM; Serra M; Guaraldi M; Shea TB
    Biotechniques; 2012 Mar; 52(3):177-82. PubMed ID: 22401551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent poly(3,4-ethylenedioxythiophene)-based microelectrodes for extracellular recording.
    Flachs D; Köhler T; Thielemann C
    Biointerphases; 2018 Aug; 13(4):041008. PubMed ID: 30081642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of translucent indium tin oxide to measure stimulatory effects of a passive conductor during field stimulation of rabbit hearts.
    Knisley SB; Pollard AE
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1137-46. PubMed ID: 15894581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory cortical neurons in vitro: cell culture and multichannel extracellular recording.
    Gopal KV; Gross GW
    Acta Otolaryngol; 1996 Sep; 116(5):690-6. PubMed ID: 8908244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent plateau potentials in cultured Retzius cells of the medicinal leech.
    Angstadt JD; Choo JJ
    J Neurophysiol; 1996 Sep; 76(3):1491-502. PubMed ID: 8890269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of stimuli distribution on neural network responses.
    Scarsi F; Tessadori J; Pasquale V; Chiappalone M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4761-4. PubMed ID: 26737358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Afferent inputs modulate the activity of a rhythmic burst generator in the rat disinhibited spinal cord in vitro.
    Bracci E; Beato M; Nistri A
    J Neurophysiol; 1997 Jun; 77(6):3157-67. PubMed ID: 9212265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Qualitative and quantitative estimation of comprehensive synaptic connectivity in short- and long-term cultured rat hippocampal neurons with new analytical methods inspired by Scatchard and Hill plots.
    Tanamoto R; Shindo Y; Niwano M; Matsumoto Y; Miki N; Hotta K; Oka K
    Biochem Biophys Res Commun; 2016 Mar; 471(4):486-91. PubMed ID: 26896767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective electrical interfaces with the nervous system.
    Rutten WL
    Annu Rev Biomed Eng; 2002; 4():407-52. PubMed ID: 12117764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording.
    Mathieson K; Moodie AR; Grant E; Morrison JD
    J Med Eng Technol; 2013 Feb; 37(2):79-85. PubMed ID: 23249248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.