These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8107504)

  • 1. Single-channel and whole-cell recordings from on-neurone glial cells in Helix pomatia ganglia.
    Gommerat I; Jacquet G; Chagneux H; Gola M
    J Neurosci Methods; 1993 Nov; 50(2):243-51. PubMed ID: 8107504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.
    Gommerat I; Gola M
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):649-64. PubMed ID: 8887773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Satellite glial cell responses to neuronal firing in the nervous system of Helix pomatia.
    Gommerat I; Gola M
    J Membr Biol; 1994 Mar; 138(3):209-19. PubMed ID: 8006958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large conductance Ca(2+)-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones.
    Crest M; Gola M
    J Physiol; 1993 Jun; 465():265-87. PubMed ID: 8229836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Satellite glial cells in situ within mammalian prevertebral ganglia express K+ channels active at rest potential.
    Gola M; Niel JP; Delmas P; Jacquet G
    J Membr Biol; 1993 Oct; 136(1):75-84. PubMed ID: 8271274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2(+)-activated K+ current involvement in neuronal function revealed by in situ single-channel analysis in Helix neurones.
    Gola M; Ducreux C; Chagneux H
    J Physiol; 1990 Jan; 420():73-109. PubMed ID: 2109063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-channel and whole-cell recordings from non-dissociated sympathetic neurones in rabbit coeliac ganglia.
    Gola M; Niel JP; Bessone R; Fayolle R
    J Neurosci Methods; 1992 Jun; 43(1):13-22. PubMed ID: 1382174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patch-clamp study of neurons and glial cells in isolated myenteric ganglia.
    Hanani M; Francke M; Härtig W; Grosche J; Reichenbach A; Pannicke T
    Am J Physiol Gastrointest Liver Physiol; 2000 Apr; 278(4):G644-51. PubMed ID: 10762619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two subtypes of C current in identified Helix neurons.
    Crest M; Watanabe K; Gola M
    Brain Res; 1990 Jun; 518(1-2):299-302. PubMed ID: 2117989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patch cramming: monitoring intracellular messengers in intact cells with membrane patches containing detector ion channels.
    Kramer RH
    Neuron; 1990 Mar; 4(3):335-41. PubMed ID: 1690562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single voltage-gated K+ channels and their functions in small dorsal root ganglion neurones of rat.
    Safronov BV; Bischoff U; Vogel W
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):393-408. PubMed ID: 8782104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-dependent regulation of inwardly rectifying potassium currents in non-myelinating Schwann cells in mice.
    Konishi T
    J Physiol; 1994 Jan; 474(2):193-202. PubMed ID: 8006809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of GABA(B) receptors potentiates inward rectifying potassium currents in satellite glial cells from rat trigeminal ganglia: in vivo patch-clamp analysis.
    Takeda M; Nasu M; Kanazawa T; Shimazu Y
    Neuroscience; 2015 Mar; 288():51-8. PubMed ID: 25542421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single potassium channels in neuropile glial cells of the leech central nervous system.
    Müller M; Schlue WR
    Brain Res; 1997 Sep; 769(2):245-55. PubMed ID: 9374192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of glial response in hibernation: a patch-clamp study on glial cells acutely isolated from hibernating land snail.
    Nikolic L; Bataveljic D; Andjus PR; Moldovan I; Nedeljkovic M; Petkovic B
    J Biol Rhythms; 2014 Dec; 29(6):442-55. PubMed ID: 25416596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium channels in crustacean glial cells.
    Erxleben C
    Glia; 1991; 4(3):285-92. PubMed ID: 1832657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of an ultrarapid delayed rectifier potassium channel involved in canine atrial repolarization.
    Yue L; Feng J; Li GR; Nattel S
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):647-62. PubMed ID: 8930833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single potential-dependent K+ channels and their oligomers in molluscan glial cells.
    Geletyuk VI; Kazachenko VN
    Biochim Biophys Acta; 1989 Jun; 981(2):343-50. PubMed ID: 2730910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations of potassium channel activity in retinal Müller glial cells induced by arachidonic acid.
    Bringmann A; Skatchkov SN; Biedermann B; Faude F; Reichenbach A
    Neuroscience; 1998 Oct; 86(4):1291-306. PubMed ID: 9697134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.