These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8107869)

  • 1. Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres.
    Escobar AL; Monck JR; Fernandez JM; Vergara JL
    Nature; 1994 Feb; 367(6465):739-41. PubMed ID: 8107869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the calcium release domains during excitation-contraction coupling in skeletal muscle fibres.
    DiFranco M; Novo D; Vergara JL
    Pflugers Arch; 2002 Feb; 443(4):508-19. PubMed ID: 11907817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed laser imaging of rapid Ca2+ gradients in excitable cells.
    Monck JR; Robinson IM; Escobar AL; Vergara JL; Fernandez JM
    Biophys J; 1994 Aug; 67(2):505-14. PubMed ID: 7948669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcomeric Ca2+ gradients during activation of frog skeletal muscle fibres imaged with confocal and two-photon microscopy.
    Hollingworth S; Soeller C; Baylor SM; Cannell MB
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):551-60. PubMed ID: 10922007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model of calcium diffusion, binding and membrane transport in the sarcomere of frog skeletal muscle.
    Hollý M; Poledna J
    Gen Physiol Biophys; 1989 Dec; 8(6):539-53. PubMed ID: 2533126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcomere mechanics in uniform and nonuniform cardiac muscle: a link between pump function and arrhythmias.
    Ter Keurs HE; Shinozaki T; Zhang YM; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():79-95. PubMed ID: 18375580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two mechanisms of quantized calcium release in skeletal muscle.
    Klein MG; Cheng H; Santana LF; Jiang YH; Lederer WJ; Schneider MF
    Nature; 1996 Feb; 379(6564):455-8. PubMed ID: 8559251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'In situ' high pressure confocal Ca(2+)-fluorescence microscopy in skeletal muscle: a new method to study pressure limits in mammalian cells.
    Friedrich O; Wegner FV; Hartmann M; Frey B; Sommer K; Ludwig H; Fink RH
    Undersea Hyperb Med; 2006; 33(3):181-95. PubMed ID: 16869532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation-dependent redistribution of charge movement between unavailable and available states.
    Stroffekova K; Heiny JA
    Gen Physiol Biophys; 1997 Mar; 16(1):79-89. PubMed ID: 9290945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics of functioning of electromechanical coupling in striated muscles of higher and lower vertebrates].
    Nasledov GA; Katina IE; Zhitnikova IuV
    Biofizika; 2002; 47(4):716-27. PubMed ID: 12298213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of spontaneous and action potential-induced calcium transients in developing myotubes in vitro.
    Flucher BE; Andrews SB
    Cell Motil Cytoskeleton; 1993; 25(2):143-57. PubMed ID: 8324830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Different sensitivity of cross-bridges in the muscle fiber sarcomere in Ca2+-activation].
    Son'kin BIa; Bukatina AE; Alievskaia LL
    Biofizika; 1986; 31(2):348-50. PubMed ID: 3634629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myofilament sliding per ATP molecule in rabbit muscle fibres studied using laser flash photolysis of caged ATP.
    Yamada T; Abe O; Kobayashi T; Sugi H
    J Physiol; 1993 Jul; 466():229-43. PubMed ID: 8410692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase.
    Sculptoreanu A; Scheuer T; Catterall WA
    Nature; 1993 Jul; 364(6434):240-3. PubMed ID: 8391648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium release domains in mammalian skeletal muscle studied with two-photon imaging and spot detection techniques.
    Gómez J; Neco P; DiFranco M; Vergara JL
    J Gen Physiol; 2006 Jun; 127(6):623-37. PubMed ID: 16735751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetanus responses under rapid bath solution change: electrotonic depolarization of transverse tubules may release Ca2+ from sarcoplasmic reticulum of Rana japonica skeletal muscle.
    Fujishiro N; Kawata H
    Comp Biochem Physiol Comp Physiol; 1992 Dec; 103(4):661-6. PubMed ID: 1361893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium transients in frog skeletal muscle fibers injected with Azo1, a tetracarboxylate Ca2+ indicator.
    Hollingworth S; Baylor SM
    Soc Gen Physiol Ser; 1986; 40():261-83. PubMed ID: 3487122
    [No Abstract]   [Full Text] [Related]  

  • 19. Modulation of Ca2+ transients by photorelease of caged nucleotides in frog skeletal muscle fibers.
    Sanchez JA; Vergara J
    Am J Physiol; 1994 May; 266(5 Pt 1):C1291-300. PubMed ID: 8203494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging of calcium transients in skeletal muscle fibers.
    Vergara J; DiFranco M; Compagnon D; Suarez-Isla BA
    Biophys J; 1991 Jan; 59(1):12-24. PubMed ID: 2015378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.