These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 810805)

  • 1. Central noradrenergic regulation of cerebral blood flow and vascular permeability.
    Raichle ME; Hartman BK; Eichling JO; Sharpe LG
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3726-30. PubMed ID: 810805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of dopamine -hydroxylase as a marker for the central noradrenergic nervous system in rat brain.
    Hartman BK; Zide D; Udenfriend S
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2722-6. PubMed ID: 4560699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sympathetic nervous system and the regulation of cerebral blood flow.
    Skinhoj E
    Eur Neurol; 1971-1972; 6(1):190-2. PubMed ID: 4403393
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of the peripheral sympathetic nervous system in cerebral blood flow autoregulation.
    Hernández-Pérez MJ; Raichle ME; Stone HL
    Stroke; 1975; 6(3):284-92. PubMed ID: 239471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central neuroendocrine regulation of brain water permeability.
    Raichle ME; Grubb RL; Eichling JO
    Ciba Found Symp; 1978 Mar; (56):219-35. PubMed ID: 97063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and aging of noradrenergic cell bodies and axon terminals in the chicken.
    Yurkewicz L; Marchi M; Lauder JM; Giacobini E
    J Neurosci Res; 1981; 6(5):621-41. PubMed ID: 6119368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central dual innervation of arterioles and capillaries in the brain.
    Itakura T; Yamamoto K; Tohyama M; Shimizu N
    Stroke; 1977; 8(3):360-5. PubMed ID: 871025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for central innervation of intracerebral blood vessels: local cerebral blood flow measurements and histofluorescence analysis by the sucrose-phosphate-glyoxylic acid (SPG) method.
    de la Torre JC
    Neuroscience; 1976 Dec; 1(6):455-7. PubMed ID: 11370237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a dual innervation affecting local blood flow in the hypothalamus of the conscious rabbit.
    Rosendorff C; Mitchell G; Scriven DR; Shapiro C
    Circ Res; 1976 Mar; 38(3):140-5. PubMed ID: 1248062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on neurogenic control of the cerebral circulation.
    Deshmukh VD; Harper AM; Rowan JO; Jennett WB
    Eur Neurol; 1971-1972; 6(1):166-74. PubMed ID: 4262375
    [No Abstract]   [Full Text] [Related]  

  • 11. Sympathetic adrenergic influence on brain vessels as studied by changes in cerebral blood volume of mice.
    Edvinsson L; Nielsen KC; Owman C; West KA
    Eur Neurol; 1971-1972; 6(1):193-202. PubMed ID: 5153423
    [No Abstract]   [Full Text] [Related]  

  • 12. Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes.
    Kalia M; Fuxe K; Goldstein M
    J Comp Neurol; 1985 Mar; 233(3):308-32. PubMed ID: 2858497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the sympathetic nervous system in cerebral blood flow autoregulation.
    Hernández MJ; Raichle ME; Stone HL
    Eur Neurol; 1971-1972; 6(1):175-9. PubMed ID: 5005113
    [No Abstract]   [Full Text] [Related]  

  • 14. Noradrenergic innervation of the hypothalamus of rhesus monkeys: distribution of dopamine-beta-hydroxylase immunoreactive fibers and quantitative analysis of varicosities in the paraventricular nucleus.
    Ginsberg SD; Hof PR; Young WG; Morrison JH
    J Comp Neurol; 1993 Jan; 327(4):597-611. PubMed ID: 8440783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuropharmacologic control of cerebral capillary permeability: current implications for therapy of vasogenic brain edema.
    Weinand ME
    Med Hypotheses; 1988 May; 26(1):51-3. PubMed ID: 3398790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-HT-containing nerves to major cerebral arteries of the gerbil originate in the superior cervical ganglia.
    Cowen T; Alafaci C; Crockard HA; Burnstock G
    Brain Res; 1986 Oct; 384(1):51-9. PubMed ID: 3790999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholamine biosynthetic enzymes are expressed in replicating cells of the peripheral but not the central nervous system.
    Rothman TP; Specht LA; Gershon MD; Joh TH; Teitelman G; Pickel VM; Reis DJ
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):6221-5. PubMed ID: 6108565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional blood-brain barrier permeability to water and cerebral blood flow during status epilepticus: insensitivity to norepinephrine depletion.
    Ginsberg MD; Busto R; Harik SI
    Brain Res; 1985 Jun; 337(1):59-71. PubMed ID: 4005609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central adrenergic regulation of cerebral microvascular permeability and blood flow; anatomic and physiologic evidence.
    Hartman BK; Swanson LW; Raichle ME; Preskorn SH; Clark HB
    Adv Exp Med Biol; 1980; 131():113-26. PubMed ID: 6776786
    [No Abstract]   [Full Text] [Related]  

  • 20. Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons.
    Hökfelt T; Elfvin LG; Elde R; Schultzberg M; Goldstein M; Luft R
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3587-91. PubMed ID: 16592433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.