These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8108381)

  • 1. A method to recognize distant repeats in protein sequences.
    Heringa J; Argos P
    Proteins; 1993 Dec; 17(4):391-41. PubMed ID: 8108381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking repeats using significance and transitivity.
    Szklarczyk R; Heringa J
    Bioinformatics; 2004 Aug; 20 Suppl 1():i311-7. PubMed ID: 15262814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple alignment by sequence annealing.
    Schwartz AS; Pachter L
    Bioinformatics; 2007 Jan; 23(2):e24-9. PubMed ID: 17237099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein structure alignment considering phenotypic plasticity.
    Csaba G; Birzele F; Zimmer R
    Bioinformatics; 2008 Aug; 24(16):i98-104. PubMed ID: 18689847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple sequence alignments.
    Wallace IM; Blackshields G; Higgins DG
    Curr Opin Struct Biol; 2005 Jun; 15(3):261-6. PubMed ID: 15963889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global multiple-sequence alignment with repeats.
    Sammeth M; Heringa J
    Proteins; 2006 Jul; 64(1):263-74. PubMed ID: 16609972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incremental window-based protein sequence alignment algorithms.
    Rangwala H; Karypis G
    Bioinformatics; 2007 Jan; 23(2):e17-23. PubMed ID: 17237087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and prediction of functional sub-types from protein sequence alignments.
    Hannenhalli SS; Russell RB
    J Mol Biol; 2000 Oct; 303(1):61-76. PubMed ID: 11021970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo identification of highly diverged protein repeats by probabilistic consistency.
    Biegert A; Söding J
    Bioinformatics; 2008 Mar; 24(6):807-14. PubMed ID: 18245125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments.
    Gotoh O
    J Mol Biol; 1996 Dec; 264(4):823-38. PubMed ID: 8980688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel algorithm for identifying low-complexity regions in a protein sequence.
    Li X; Kahveci T
    Bioinformatics; 2006 Dec; 22(24):2980-7. PubMed ID: 17018537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the sensitivity of the sequence profile method.
    Lüthy R; Xenarios I; Bucher P
    Protein Sci; 1994 Jan; 3(1):139-46. PubMed ID: 7511453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homology-based method for identification of protein repeats using statistical significance estimates.
    Andrade MA; Ponting CP; Gibson TJ; Bork P
    J Mol Biol; 2000 May; 298(3):521-37. PubMed ID: 10772867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On single and multiple models of protein families for the detection of remote sequence relationships.
    Casbon JA; Saqi MA
    BMC Bioinformatics; 2006 Jan; 7():48. PubMed ID: 16448555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the size of the sequence profiles to increase the accuracy of protein sequence alignments generated by profile-profile algorithms.
    Poleksic A; Fienup M
    Bioinformatics; 2008 May; 24(9):1145-53. PubMed ID: 18337259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From analysis of protein structural alignments toward a novel approach to align protein sequences.
    Sunyaev SR; Bogopolsky GA; Oleynikova NV; Vlasov PK; Finkelstein AV; Roytberg MA
    Proteins; 2004 Feb; 54(3):569-82. PubMed ID: 14748004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in accuracy of multiple sequence alignment using novel group-to-group sequence alignment algorithm with piecewise linear gap cost.
    Yamada S; Gotoh O; Yamana H
    BMC Bioinformatics; 2006 Dec; 7():524. PubMed ID: 17137519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.