These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8108443)

  • 1. Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line.
    van Netten SM; Khanna SM
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1549-53. PubMed ID: 8108443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid responses of the cupula in the lateral line of ruffe (Gymnocephalus cernuus).
    Curcić-Blake B; Netten SM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):393-401. PubMed ID: 15719242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependency of cupular mechanics and hair cell frequency selectivity in the fish canal lateral line organ.
    Esther J; Wiersinga-Post C; van Netten SM
    J Comp Physiol A; 2000 Oct; 186(10):949-56. PubMed ID: 11138795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology.
    van Netten SM
    Biol Cybern; 2006 Jan; 94(1):67-85. PubMed ID: 16315048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser interferometric measurements on the dynamic behaviour of the cupula in the fish lateral line.
    van Netten SM; Kroese AB
    Hear Res; 1987; 29(1):55-61. PubMed ID: 3654397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of quinine on the mechanical frequency response of the cupula in the fish lateral line.
    van Netten SM; Karlsson KK; Khanna SM; Flock A
    Hear Res; 1994 Mar; 73(2):223-30. PubMed ID: 8188551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical demodulation of hydrodynamic stimuli performed by the lateral line organ.
    van Netten SM; Khanna SM
    Prog Brain Res; 1993; 97():45-51. PubMed ID: 8234766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Transfer Characteristics of Hair Cells Encoding Mechanical Stimuli in the Lateral Line of Zebrafish.
    Pichler P; Lagnado L
    J Neurosci; 2019 Jan; 39(1):112-124. PubMed ID: 30413644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography and mechanics of the cupula in the fish lateral line. I. Variation of cupular structure and composition in three dimensions.
    Kelly JP; van Netten SM
    J Morphol; 1991 Jan; 207(1):23-36. PubMed ID: 1671882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibers innervating different parts of the lateral line system of an Antarctic notothenioid, Trematomus bernacchii, have similar frequency responses, despite large variation in the peripheral morphology.
    Coombs S; Montgomery J
    Brain Behav Evol; 1992; 40(5):217-33. PubMed ID: 1450897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies.
    Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties and motion of the cupula of the human semicircular canal.
    Selva P; Oman CM; Stone HA
    J Vestib Res; 2009; 19(3-4):95-110. PubMed ID: 20448336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish.
    Montgomery JC; Bodznick D
    Neurosci Lett; 1994 Jun; 174(2):145-8. PubMed ID: 7970170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hair cell mechano-transduction: its influence on the gross mechanical characteristics of a hair cell sense organ.
    van Netten SM
    Biophys Chem; 1997 Oct; 68(1-3):43-52. PubMed ID: 9468609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural transduction in Xenopus laevis lateral line system.
    Strelioff D; Honrubia V
    J Neurophysiol; 1978 Mar; 41(2):432-44. PubMed ID: 650276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory processing of water currents by fishes.
    Montgomery J; Carton G; Voigt R; Baker C; Diebel C
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1325-7. PubMed ID: 11079424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drag force acting on a neuromast in the fish lateral line trunk canal. I. Numerical modelling of external-internal flow coupling.
    Barbier C; Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):627-40. PubMed ID: 18926967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory transduction of head velocity and acceleration in the toadfish horizontal semicircular canal.
    Rabbitt RD; Boyle R; Highstein SM
    J Neurophysiol; 1994 Aug; 72(2):1041-8. PubMed ID: 7983512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The overlapping roles of the inner ear and lateral line: the active space of dipole source detection.
    Braun CB; Coombs S
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1115-9. PubMed ID: 11079381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposon-mediated enhancer detection reveals the location, morphology and development of the cupular organs, which are putative hydrodynamic sensors, in the ascidian Ciona intestinalis.
    Ohta N; Horie T; Satoh N; Sasakura Y
    Zoolog Sci; 2010 Nov; 27(11):842-50. PubMed ID: 21039122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.