BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8108455)

  • 1. The molecular basis of a spectral shift in the rhodopsins of two species of squid from different photic environments.
    Morris A; Bowmaker JK; Hunt DM
    Proc Biol Sci; 1993 Dec; 254(1341):233-40. PubMed ID: 8108455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and nucleotide sequence of cDNA for rhodopsin of the squid Todarodes pacificus.
    Hara-Nishimura I; Kondo M; Nishimura M; Hara R; Hara T
    FEBS Lett; 1993 Feb; 317(1-2):5-11. PubMed ID: 8428633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning of a rhodopsin gene from salamander rods.
    Chen N; Ma JX; Corson DW; Hazard ES; Crouch RK
    Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1907-13. PubMed ID: 8759361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the absorption maximum of rhodopsin by amino acids in the C-terminus.
    Yokoyama S; Tada T; Yamato T
    Photochem Photobiol; 2007; 83(2):236-41. PubMed ID: 16922606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodopsin from the fish, Astyanax: role of tyrosine 261 in the red shift.
    Yokoyama R; Knox BE; Yokoyama S
    Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):939-45. PubMed ID: 7706043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rhodopsin gene of the cuttlefish Sepia officinalis: sequence and spectral tuning.
    Bellingham J; Morris AG; Hunt DM
    J Exp Biol; 1998 Aug; 201(Pt 15):2299-306. PubMed ID: 9662500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family.
    Terakita A; Yamashita T; Shichida Y
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14263-7. PubMed ID: 11106382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed G-protein-linked receptor.
    Hall MD; Hoon MA; Ryba NJ; Pottinger JD; Keen JN; Saibil HR; Findlay JB
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):35-40. PubMed ID: 1900420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning.
    Chan T; Lee M; Sakmar TP
    J Biol Chem; 1992 May; 267(14):9478-80. PubMed ID: 1577792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and nucleotide sequence of cDNA for retinochrome, retinal photoisomerase from the squid retina.
    Hara-Nishimura I; Matsumoto T; Mori H; Nishimura M; Hara R; Hara T
    FEBS Lett; 1990 Oct; 271(1-2):106-10. PubMed ID: 2226795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui.
    Briscoe AD; Bernard GD; Szeto AS; Nagy LM; White RH
    J Comp Neurol; 2003 Apr; 458(4):334-49. PubMed ID: 12619069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth.
    Fasick JI; Robinson PR
    Vis Neurosci; 2000; 17(5):781-8. PubMed ID: 11153657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal.
    Bickelmann C; Morrow JM; Müller J; Chang BS
    Vis Neurosci; 2012 Sep; 29(4-5):211-7. PubMed ID: 22874131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual variation in rod absorbance spectra correlated with opsin gene polymorphism in sand goby (Pomatoschistus minutus).
    Jokela-Määttä M; Vartio A; Paulin L; Donner K
    J Exp Biol; 2009 Nov; 212(Pt 21):3415-21. PubMed ID: 19837882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).
    Temple SE; Ramsden SD; Haimberger TJ; Veldhoen KM; Veldhoen NJ; Carter NL; Roth WM; Hawryshyn CW
    J Exp Biol; 2008 Jul; 211(Pt 13):2134-43. PubMed ID: 18552303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.