These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8108455)

  • 21. The rhodopsin-encoding gene of bony fish lacks introns.
    Fitzgibbon J; Hope A; Slobodyanyuk SJ; Bellingham J; Bowmaker JK; Hunt DM
    Gene; 1995 Oct; 164(2):273-7. PubMed ID: 7590342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Projection structure of an invertebrate rhodopsin.
    Davies A; Schertler GF; Gowen BE; Saibil HR
    J Struct Biol; 1996; 117(1):36-44. PubMed ID: 8776886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.
    Dungan SZ; Kosyakov A; Chang BS
    Mol Biol Evol; 2016 Feb; 33(2):323-36. PubMed ID: 26486871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment.
    Yamada K; Kawanabe A; Kandori H
    Biochemistry; 2010 Mar; 49(11):2416-23. PubMed ID: 20170125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics.
    van Hazel I; Dungan SZ; Hauser FE; Morrow JM; Endler JA; Chang BS
    Protein Sci; 2016 Jul; 25(7):1308-18. PubMed ID: 26889650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular cloning of the salamander red and blue cone visual pigments.
    Xu L; Hazard ES; Lockman DK; Crouch RK; Ma J
    Mol Vis; 1998 Jul; 4():10. PubMed ID: 9675215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function.
    Choi AR; Kim SY; Yoon SR; Bae K; Jung KH
    J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence divergence analysis for the prediction of seven-helix membrane protein structures: II. A 3-D model of human rhodopsin.
    Alkorta I; Du P
    Protein Eng; 1994 Oct; 7(10):1231-8. PubMed ID: 7855138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of lamprey rhodopsin cDNA.
    Hisatomi O; Iwasa T; Tokunaga F; Yasui A
    Biochem Biophys Res Commun; 1991 Feb; 174(3):1125-32. PubMed ID: 1840482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhodopsins from three frog and toad species: sequences and functional comparisons.
    Fyhrquist N; Donner K; Hargrave PA; McDowell JH; Popp MP; Smith WC
    Exp Eye Res; 1998 Mar; 66(3):295-305. PubMed ID: 9533857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of a helix B lysine residue in the photoactive site in channelrhodopsins.
    Li H; Govorunova EG; Sineshchekov OA; Spudich JL
    Biophys J; 2014 Apr; 106(8):1607-17. PubMed ID: 24739160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and expression of frog rhodopsin cDNA.
    Kayada S; Hisatomi O; Tokunaga F
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Mar; 110(3):599-604. PubMed ID: 7584833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii.
    Sineshchekov OA; Jung KH; Spudich JL
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8689-94. PubMed ID: 12060707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the relation between the photoactivation energy and the absorbance spectrum of visual pigments.
    Ala-Laurila P; Pahlberg J; Koskelainen A; Donner K
    Vision Res; 2004; 44(18):2153-8. PubMed ID: 15183682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. To see in different seas: spatial variation in the rhodopsin gene of the sand goby (Pomatoschistus minutus).
    Larmuseau MH; Raeymaekers JA; Ruddick KG; Van Houdt JK; Volckaert FA
    Mol Ecol; 2009 Oct; 18(20):4227-39. PubMed ID: 19732334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.
    Davies A; Gowen BE; Krebs AM; Schertler GF; Saibil HR
    J Mol Biol; 2001 Nov; 314(3):455-63. PubMed ID: 11846559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments.
    Wilkie SE; Robinson PR; Cronin TW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2000 Jul; 39(27):7895-901. PubMed ID: 10891069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 1999 Jun; 38(25):7931-7. PubMed ID: 10387035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima.
    Shtyrov AA; Nikolaev DM; Mironov VN; Vasin AV; Panov MS; Tveryanovich YS; Ryazantsev MN
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.