BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8109173)

  • 21. The DNA sequence analysis of the HAP4-LAP4 region on chromosome XI of Saccharomyces cerevisiae suggests the presence of a second aspartate aminotransferase gene in yeast.
    Chéret G; Pallier C; Valens M; Diagnan-Fornier B; Fukuhara H; Bolotin-Fukuhara M; Sor F
    Yeast; 1993 Nov; 9(11):1259-65. PubMed ID: 8109175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence requirement for trimethylation of yeast cytochrome c.
    Takakura H; Yamamoto T; Sherman F
    Biochemistry; 1997 Mar; 36(9):2642-8. PubMed ID: 9054571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ADE6 gene of Saccharomyces cerevisiae yeast encoding formylglycinamidine-ribonucleotide synthetase. Cloning, sequencing, and analysis.
    Andreichuk YuV ; Domkin VD; Ryzhova TA; Koulikov VN; Kostikova TR
    Biochemistry (Mosc); 1997 Jul; 62(7):742-52. PubMed ID: 9331966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active site properties of monomeric triosephosphate isomerase (monoTIM) as deduced from mutational and structural studies.
    Schliebs W; Thanki N; Eritja R; Wierenga R
    Protein Sci; 1996 Feb; 5(2):229-39. PubMed ID: 8745400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance.
    Michel S; Keller MA; Wamelink MM; Ralser M
    BMC Genet; 2015 Feb; 16():13. PubMed ID: 25887987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disruption of Escherichia coli transaldolase into catalytically active monomers: evidence against half-of-the-sites mechanism.
    Schörken U; Jia J; Sahm H; Sprenger GA; Schneider G
    FEBS Lett; 1998 Dec; 441(2):247-50. PubMed ID: 9883893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress.
    Juhnke H; Krems B; Kötter P; Entian KD
    Mol Gen Genet; 1996 Sep; 252(4):456-64. PubMed ID: 8879247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transaldolase of Methanocaldococcus jannaschii.
    Soderberg T; Alver RC
    Archaea; 2004 Oct; 1(4):255-62. PubMed ID: 15810435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and expression of the human gene for transaldolase. A novel highly repetitive element constitutes an integral part of the coding sequence.
    Banki K; Halladay D; Perl A
    J Biol Chem; 1994 Jan; 269(4):2847-51. PubMed ID: 8300619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway.
    Verhoeven NM; Huck JH; Roos B; Struys EA; Salomons GS; Douwes AC; van der Knaap MS; Jakobs C
    Am J Hum Genet; 2001 May; 68(5):1086-92. PubMed ID: 11283793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PRS5, the fifth member of the phosphoribosyl pyrophosphate synthetase gene family in Saccharomyces cerevisiae, is essential for cell viability in the absence of either PRS1 or PRS3.
    Hernando Y; Parr A; Schweizer M
    J Bacteriol; 1998 Dec; 180(23):6404-7. PubMed ID: 9829955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts.
    Senac T; Hahn-Hägerdal B
    Appl Environ Microbiol; 1991 Jun; 57(6):1701-6. PubMed ID: 1831338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel heterozygous mutations in TALDO1 gene causing transaldolase deficiency and early infantile liver failure.
    Balasubramaniam S; Wamelink MM; Ngu LH; Talib A; Salomons GS; Jakobs C; Keng WT
    J Pediatr Gastroenterol Nutr; 2011 Jan; 52(1):113-6. PubMed ID: 21119539
    [No Abstract]   [Full Text] [Related]  

  • 34. Characterization and tissue-specific expression of the Drosophila transaldolase gene.
    Lachaise F; Nassar F; Ducancel F; Italiano R; Martin G
    Gene; 2002 Oct; 299(1-2):263-70. PubMed ID: 12459274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An unusual metal-bound 4-fluorothreonine transaldolase from Streptomyces sp. MA37 catalyses promiscuous transaldol reactions.
    Wu L; Tong MH; Raab A; Fang Q; Wang S; Kyeremeh K; Yu Y; Deng H
    Appl Microbiol Biotechnol; 2020 May; 104(9):3885-3896. PubMed ID: 32140842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene.
    Thomas D; Barbey R; Surdin-Kerjan Y
    J Biol Chem; 1990 Sep; 265(26):15518-24. PubMed ID: 2203779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isozymes of transaldolase of Candida utilis [proceedings].
    Araujo Neto JS; Panek AD
    An Acad Bras Cienc; 1978 Mar; 50(1):117. PubMed ID: 566524
    [No Abstract]   [Full Text] [Related]  

  • 38. New insights into plant transaldolase.
    Caillau M; Paul Quick W
    Plant J; 2005 Jul; 43(1):1-16. PubMed ID: 15960612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical mapping of site-directed cleavages on single DNA molecules by the RecA-assisted restriction endonuclease technique.
    Wang YK; Huff EJ; Schwartz DC
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):165-9. PubMed ID: 7816810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pseudogene for a novel ubiquitin C-terminal hydrolase of S. cerevisiae.
    Jentsch S
    Nucleic Acids Res; 1991 Mar; 19(5):1147. PubMed ID: 1826949
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.