BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8109349)

  • 1. Coupling between ATPase and force-generating attachment-detachment cycles of actomyosin in vitro.
    Yanagida T; Ishijima A; Saito K; Harada Y
    Adv Exp Med Biol; 1993; 332():339-47; discussion 347-9. PubMed ID: 8109349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces.
    Ishijima A; Kojima H; Higuchi H; Harada Y; Funatsu T; Yanagida T
    Biophys J; 1996 Jan; 70(1):383-400. PubMed ID: 8770215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-piconewton force fluctuations of actomyosin in vitro.
    Ishijima A; Doi T; Sakurada K; Yanagida T
    Nature; 1991 Jul; 352(6333):301-6. PubMed ID: 1830130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loose coupling between chemical and mechanical reactions in actomyosin energy transduction.
    Yanagida T
    Adv Biophys; 1990; 26():75-95. PubMed ID: 2082730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay.
    Harada Y; Sakurada K; Aoki T; Thomas DD; Yanagida T
    J Mol Biol; 1990 Nov; 216(1):49-68. PubMed ID: 2146398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actomyosin interaction in striated muscle.
    Cooke R
    Physiol Rev; 1997 Jul; 77(3):671-97. PubMed ID: 9234962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of muscle contraction based on the Langevin equation with actomyosin potentials.
    Tamura Y; Ito A; Saito M
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):273-283. PubMed ID: 27472485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule analysis of the actomyosin motor using nano-manipulation.
    Ishijima A; Harada Y; Kojima H; Funatsu T; Higuchi H; Yanagida T
    Biochem Biophys Res Commun; 1994 Mar; 199(2):1057-63. PubMed ID: 8135779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of stochastic processes in motile crossbridge systems.
    Pate E; Cooke R
    J Muscle Res Cell Motil; 1991 Aug; 12(4):376-93. PubMed ID: 1939603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate.
    Stewart TJ; Murthy V; Dugan SP; Baker JE
    J Biol Chem; 2021 Nov; 297(5):101178. PubMed ID: 34508779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift.
    Burghardt TP; Sun X; Wang Y; Ajtai K
    PLoS One; 2017; 12(4):e0174690. PubMed ID: 28423017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the role of the N terminus of actin in actomyosin interactions. Comparison with other mutant actins and implications for the cross-bridge cycle.
    Miller CJ; Wong WW; Bobkova E; Rubenstein PA; Reisler E
    Biochemistry; 1996 Dec; 35(51):16557-65. PubMed ID: 8987990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A; Peyser YM; Nili M; Ajtai K; Reisler E; Burghardt TP
    Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of the work done by ATP-induced actin-myosin sliding on the initial baseline force: its implications for kinetic properties of myosin heads in muscle contraction.
    Sugi H; Oiwa K; Chaen S
    Adv Exp Med Biol; 1993; 332():303-9; discussion 310-1. PubMed ID: 8109344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed
    Kitamura K; Tokunaga M; Esaki S; Iwane AH; Yanagida T
    Biophysics (Nagoya-shi); 2005; 1():1-19. PubMed ID: 27857548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic properties of actomyosin motor.
    Kitamura K; Yanagida T
    Biosystems; 2003 Sep; 71(1-2):101-10. PubMed ID: 14568211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution.
    Brenner B; Eisenberg E
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3542-6. PubMed ID: 2939452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical measurements of single actomyosin motor force.
    Miyata H; Yoshikawa H; Hakozaki H; Suzuki N; Furuno T; Ikegami A; Kinosita K; Nishizaka T; Ishiwata S
    Biophys J; 1995 Apr; 68(4 Suppl):286S-289S; discussion 289S-290S. PubMed ID: 7787092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force generation in single conventional actomyosin complexes under high dynamic load.
    Takagi Y; Homsher EE; Goldman YE; Shuman H
    Biophys J; 2006 Feb; 90(4):1295-307. PubMed ID: 16326899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.