BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8110063)

  • 1. Transcutaneous energy transfer system performance evaluation.
    Mussivand T; Miller JA; Santerre PJ; Belanger G; Rajagopalan KC; Hendry PJ; Masters RG; Holmes KS; Robichaud R; Keaney M
    Artif Organs; 1993 Nov; 17(11):940-7. PubMed ID: 8110063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy.
    Au SLC; McCormick D; Lever N; Budgett D
    Artif Organs; 2020 Sep; 44(9):955-967. PubMed ID: 32133654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transcutaneous energy and information transfer system for implanted medical devices.
    Mussivand T; Hum A; Diguer M; Holmes KS; Vecchio G; Masters RG; Hendry PJ; Keon WJ
    ASAIO J; 1995; 41(3):M253-8. PubMed ID: 8573800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcutaneous energy transfer with voltage regulation for rotary blood pumps.
    Mussivand T; Holmes KS; Hum A; Keon WJ
    Artif Organs; 1996 Jun; 20(6):621-4. PubMed ID: 8817967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive component selection for TET powered medical devices.
    Leung HY; Budgett DM; Hu P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2913-6. PubMed ID: 22254950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcutaneous Energy Transfer with Voltage Regulation for Rotary Blood Pumps.
    Mussivand T; Holmes KS; Hum A; Keon WJ
    Artif Organs; 1996 May; 20(5):621-624. PubMed ID: 28868679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.
    Okamoto E; Yamamoto Y; Akasaka Y; Motomura T; Mitamura Y; Nosé Y
    Artif Organs; 2009 Aug; 33(8):622-6. PubMed ID: 19769776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Totally implantable intrathoracic ventricular assist device.
    Mussivand TV; Masters RG; Hendry PJ; Keon WJ
    Ann Thorac Surg; 1996 Jan; 61(1):444-7. PubMed ID: 8561623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary side control of load voltage for transcutaneous energy transmission.
    Fu Y; Hu L; Ruan X; Fu X
    J Artif Organs; 2016 Mar; 19(1):14-20. PubMed ID: 26432434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep.
    Dissanayake TD; Budgett DM; Hu P; Bennet L; Pyner S; Booth L; Amirapu S; Wu Y; Malpas SC
    Artif Organs; 2010 May; 34(5):E160-7. PubMed ID: 20633146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thoratec transcutaneous energy transformer system: a review and update.
    Rintoul TC; Dolgin A
    ASAIO J; 2004; 50(4):397-400. PubMed ID: 15307556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices.
    Abbas SM; Hannan MA; Samad SA; Hussain A
    Biomed Tech (Berl); 2014 Jun; 59(3):257-68. PubMed ID: 24445231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous Pulsed RF Energy Transfer Mitigates Tissue Heating in High Power Demand Implanted Device Applications: In Vivo and In Silico Models Results.
    Karim ML; Bosnjak AM; McLaughlin J; Crawford P; McEneaney D; Escalona OJ
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.
    Jo SE; Joung S; Suh JK; Kim YJ
    Med Biol Eng Comput; 2012 Sep; 50(9):973-80. PubMed ID: 22806430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic transcutaneous energy transfer for powering implanted devices.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices.
    Watada M; Saisho R; Kim YJ; Ohuchi K; Takatani S; Um YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1035-8. PubMed ID: 18002137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust voltage-controlled transcutaneous energy transfer system for artificial anal sphincter.
    Chen Y; Jiang P; Wang L; Yan G; Wang Z; Liu C; Han D
    Artif Organs; 2024 Jan; 48(1):37-49. PubMed ID: 37846614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Study of a TET System for Implantable Biomedical Devices.
    Dissanayake TD; Hu AP; Malpas S; Bennet L; Taberner A; Booth L; Budgett D
    IEEE Trans Biomed Circuits Syst; 2009 Dec; 3(6):370-8. PubMed ID: 23853284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.