BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8110071)

  • 21. Dialyzer performance in the clinic: comparison of six low-flux membranes.
    Kerr PG; Lo A; Chin Mm; Atkins RC
    Artif Organs; 1999 Sep; 23(9):817-21. PubMed ID: 10491028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytokine profiles during clinical high-flux dialysis: no evidence for cytokine generation by circulating monocytes.
    Grooteman MP; Nubé MJ; Daha MR; Van Limbeek J; van Deuren M; Schoorl M; Bet PM; Van Houte AJ
    J Am Soc Nephrol; 1997 Nov; 8(11):1745-54. PubMed ID: 9355078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaphylatoxin C5a generation and dialysis-induced leukopenia with different hemodialyzer membranes.
    Aljama P; Martín-Malo A; Castillo D; Velasco F; Torres A; Pérez R; Castro M
    Blood Purif; 1986; 4(1-3):88-92. PubMed ID: 3730166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction in beta2-microglobulin with super-flux versus high-flux dialysis membranes: results of a 6-week, randomized, double-blind, crossover trial.
    Pellicano R; Polkinghorne KR; Kerr PG
    Am J Kidney Dis; 2008 Jul; 52(1):93-101. PubMed ID: 18423807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembranous transport and adsorption of beta-2-microglobulin during hemodialysis using polysulfone, polyacrylonitrile, polymethylmethacrylate and cuprammonium rayon membranes.
    Klinke B; Röckel A; Abdelhamid S; Fiegel P; Walb D
    Int J Artif Organs; 1989 Nov; 12(11):697-702. PubMed ID: 2689356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dialysis membrane-dependent removal of middle molecules during hemodiafiltration: the beta2-microglobulin/albumin relationship.
    Ahrenholz PG; Winkler RE; Michelsen A; Lang DA; Bowry SK
    Clin Nephrol; 2004 Jul; 62(1):21-8. PubMed ID: 15267009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of thrombin-antithrombin III complex using polyamide and hemophan dialyzers.
    Schultze G; Hollmann S; Sinah P
    Int J Artif Organs; 1992 Jun; 15(6):370-3. PubMed ID: 1639530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of a new polyamide membrane (Polyflux 130) in high-flux dialysis.
    Schaefer RM; Gilge U; Goehl H; Heidland A
    Blood Purif; 1990; 8(1):23-31. PubMed ID: 2198889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellulose carbamates and derivatives as hemocompatible membrane materials for hemodialysis.
    Diamantoglou M; Platz J; Vienken J
    Artif Organs; 1999 Jan; 23(1):15-22. PubMed ID: 9950174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Safety of a Novel Dialyzer Containing a Fluorinated Polyurethane Surface-Modifying Macromolecule in Patients with End-Stage Kidney Disease.
    Meyer JM; Steer D; Weber LA; Zeitone AA; Thakuria M; Ho CH; Aslam S; Mullon C; Kossmann RJ
    Blood Purif; 2021; 50(6):959-967. PubMed ID: 33789265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new synthetic dialyzer with advanced permselectivity for enhanced low-molecular weight protein removal.
    Krieter DH; Lemke HD; Wanner C
    Artif Organs; 2008 Jul; 32(7):547-54. PubMed ID: 18638309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Platelet activation during haemodialysis: comparison of cuprammonium rayon and polysulfone membranes.
    Thijs A; Grooteman MP; Zweegman S; Nubé MJ; Huijgens PC; Stehouwer CD
    Blood Purif; 2007; 25(5-6):389-94. PubMed ID: 17890860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gentamicin clearance during hemodialysis: a comparison of high-efficiency cuprammonium rayon and conventional cellulose ester hemodialyzers.
    Agarwal R; Toto RD
    Am J Kidney Dis; 1993 Aug; 22(2):296-9. PubMed ID: 8352256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of dialysers with low-flux membranes: significant differences in spite of many similarities.
    Ward RA; Buscaroli A; Schmidt B; Stefoni S; Gurland HJ; Klinkmann H
    Nephrol Dial Transplant; 1997 May; 12(5):965-72. PubMed ID: 9175051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. beta 2-Microglobulin and granulocyte elastase.
    Wehle B; Bergstrom J; Kishimoto T; Lantz B; Levin N; Klinkmann H
    Nephrol Dial Transplant; 1993; 8 Suppl 2():20-4. PubMed ID: 8272248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intradialytic body weight changes and dialyzer pore size as main contributing factors to the evolution of beta-2-microglobulin in dialysis.
    Vanholder RC; Ringoir SM
    Blood Purif; 1990; 8(1):32-44. PubMed ID: 2198890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Normal T lymphocyte function in patients with end-stage renal disease hemodialyzed with 'high-flux' polysulfone membranes.
    Degiannis D; Czarnecki M; Donati D; Homer L; Eisinger RP; Raska K; Raskova J
    Am J Nephrol; 1990; 10(4):276-82. PubMed ID: 2240054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of beta-2-microglobulin by diffusion alone is feasible using highly permeable dialysis membranes.
    Naitoh A; Tatsuguchi T; Okada M; Ohmura T; Sakai K
    ASAIO Trans; 1988; 34(3):630-4. PubMed ID: 3058183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Beta 2-microglobulin kinetics during hemodialysis with different membranes].
    Stetsiuk EA; Siniukhin VN; Danilkov AP; Shpazhnikova NS; Nikolaeva NP; Khamaganova EG
    Urol Nefrol (Mosk); 1995; (3):18-20. PubMed ID: 7618215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.