BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 8110181)

  • 1. Two sites of glucose control of insulin release with distinct dependence on the energy state in pancreatic B-cells.
    Detimary P; Gilon P; Nenquin M; Henquin JC
    Biochem J; 1994 Feb; 297 ( Pt 3)(Pt 3):455-61. PubMed ID: 8110181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells.
    Gembal M; Gilon P; Henquin JC
    J Clin Invest; 1992 Apr; 89(4):1288-95. PubMed ID: 1556189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells.
    Gembal M; Detimary P; Gilon P; Gao ZY; Henquin JC
    J Clin Invest; 1993 Mar; 91(3):871-80. PubMed ID: 8383702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine triphosphate-sensitive K+ channels may not be the sole regulators of glucose-induced electrical activity in pancreatic B-cells.
    Henquin JC
    Endocrinology; 1992 Jul; 131(1):127-31. PubMed ID: 1611991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets.
    Jonas JC; Plant TD; Gilon P; Detimary P; Nenquin M; Henquin JC
    Br J Pharmacol; 1995 Feb; 114(4):872-80. PubMed ID: 7773549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible links between glucose-induced changes in the energy state of pancreatic B cells and insulin release. Unmasking by decreasing a stable pool of adenine nucleotides in mouse islets.
    Detimary P; Jonas JC; Henquin JC
    J Clin Invest; 1995 Oct; 96(4):1738-45. PubMed ID: 7560065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of the stimulation of insulin release by saturated fatty acids. A study of palmitate effects in mouse beta-cells.
    Warnotte C; Gilon P; Nenquin M; Henquin JC
    Diabetes; 1994 May; 43(5):703-11. PubMed ID: 8168648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-sensitive K+ channels may control glucose-induced electrical activity in pancreatic B-cells.
    Henquin JC
    Biochem Biophys Res Commun; 1988 Oct; 156(2):769-75. PubMed ID: 3056403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium channels of the insulin-secreting B cell.
    Petit P; Loubatières-Mariani MM
    Fundam Clin Pharmacol; 1992; 6(3):123-34. PubMed ID: 1628875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective glycolysis and calcium signaling underlie impaired insulin secretion in a transgenic mouse.
    Ribar TJ; Jan CR; Augustine GJ; Means AR
    J Biol Chem; 1995 Dec; 270(48):28688-95. PubMed ID: 7499389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of a role for GTP in the potentiation of Ca(2+)-induced insulin secretion by glucose in intact rat islets.
    Meredith M; Rabaglia ME; Metz SA
    J Clin Invest; 1995 Aug; 96(2):811-21. PubMed ID: 7635976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose induces oscillatory Ca2+ signalling and insulin release in human pancreatic beta cells.
    Hellman B; Gylfe E; Bergsten P; Grapengiesser E; Lund PE; Berts A; Tengholm A; Pipeleers DG; Ling Z
    Diabetologia; 1994 Sep; 37 Suppl 2():S11-20. PubMed ID: 7821725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multisite control of insulin release by glucose.
    Henquin JC; Gembal M; Detimary P; Gao ZY; Warnotte C; Gilon P
    Diabete Metab; 1994; 20(2):132-7. PubMed ID: 7805950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of protein kinase C activation on the regulation of the stimulus-secretion coupling in pancreatic beta-cells.
    Arkhammar P; Nilsson T; Welsh M; Welsh N; Berggren PO
    Biochem J; 1989 Nov; 264(1):207-15. PubMed ID: 2690820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus-secretion coupling in beta-cells of transplantable human islets of Langerhans. Evidence for a critical role for Ca2+ entry.
    Misler S; Barnett DW; Pressel DM; Gillis KD; Scharp DW; Falke LC
    Diabetes; 1992 Jun; 41(6):662-70. PubMed ID: 1375175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of glucose-induced biphasic insulin release: physiological role of adenosine triphosphate-sensitive K+ channel-independent glucose action.
    Taguchi N; Aizawa T; Sato Y; Ishihara F; Hashizume K
    Endocrinology; 1995 Sep; 136(9):3942-8. PubMed ID: 7649103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of membrane repolarization and cyclic AMP changes in mouse pancreatic B-cells for the inhibition of insulin release by galanin.
    Drews G; Debuyser A; Henquin JC
    Mol Cell Endocrinol; 1994 Oct; 105(1):97-102. PubMed ID: 7529734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of metabolic and functional derangements of pancreatic islets in phosphate depletion.
    Levi E; Fadda GZ; Ozbasli C; Massry SG
    Endocrinology; 1992 Nov; 131(5):2182-8. PubMed ID: 1330495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure of glucose to elicit a normal secretory response in fetal pancreatic beta cells results from glucose insensitivity of the ATP-regulated K+ channels.
    Rorsman P; Arkhammar P; Bokvist K; Hellerström C; Nilsson T; Welsh M; Welsh N; Berggren PO
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4505-9. PubMed ID: 2543980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ATP-sensitive potassium channel in pancreatic B-cells is inhibited in physiological bicarbonate buffer.
    Carroll PB; Li MX; Rojas E; Atwater I
    FEBS Lett; 1988 Jul; 234(1):208-12. PubMed ID: 2455656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.