These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 811029)
1. Studies on the degradation of pterine and pterine-6-carboxylic acid by Pseudomonas fluorescens UK-1. Soini J; Backman A Acta Chem Scand B; 1975; 29(6):710-4. PubMed ID: 811029 [TBL] [Abstract][Full Text] [Related]
2. Further studies on the degradation of folic acid in a growing culture of Pseudomonas fluorescens UK-1. Soini J; Majasaari K Acta Chem Scand; 1973 Oct; 27(10):3611-5. PubMed ID: 4131561 [No Abstract] [Full Text] [Related]
3. Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764. Kunz DA; Nagappan O Appl Environ Microbiol; 1989 Jan; 55(1):256-8. PubMed ID: 2495763 [TBL] [Abstract][Full Text] [Related]
4. Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Sosedov O; Baum S; Bürger S; Matzer K; Kiziak C; Stolz A Appl Environ Microbiol; 2010 Jun; 76(11):3668-74. PubMed ID: 20382812 [TBL] [Abstract][Full Text] [Related]
5. Pyrimidine ribonucleoside catabolism in Pseudomonas fluorescens biotype A. Chu CP; West TP Antonie Van Leeuwenhoek; 1990 May; 57(4):253-7. PubMed ID: 2112895 [TBL] [Abstract][Full Text] [Related]
6. Utilization of benzylpenicillin as carbon, nitrogen and energy source by a Pseudomonas fluorescens strain. Johnsen J Arch Microbiol; 1977 Dec; 115(3):271-5. PubMed ID: 414683 [TBL] [Abstract][Full Text] [Related]
7. [Degradation of polycyclic aromatic hydrocarbons by a strain of Pseudomonas fluorescens 16N2]. Utkin IB; Iakimov MM; Matveeva LN; Kozliak EI; Rogozhin IS; Solomon ZG; Bezborodov AM Prikl Biokhim Mikrobiol; 1991; 27(1):76-81. PubMed ID: 1903887 [TBL] [Abstract][Full Text] [Related]
8. Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite. Hoberg E; Marschner P; Lieberei R Microbiol Res; 2005; 160(2):177-87. PubMed ID: 15881835 [TBL] [Abstract][Full Text] [Related]
9. [Automated micromethod for the determination of the utilization of carbon sources by clinically significant Pseudomonas species]. Kämpfer P; Bette W; Dott W Zentralbl Bakteriol Mikrobiol Hyg A; 1987 Jun; 265(1-2):62-73. PubMed ID: 3118596 [TBL] [Abstract][Full Text] [Related]
10. Effect of carbon dioxide on growth and extracellular enzyme production by Pseudomonas fluorescens B52. Rowe MT Int J Food Microbiol; 1988 Feb; 6(1):51-6. PubMed ID: 3152795 [TBL] [Abstract][Full Text] [Related]
11. The effect of nitrogen and carbon sources on proteinase production by Pseudomonas fluorescens. Fairbairn DJ; Law BA J Appl Bacteriol; 1987 Feb; 62(2):105-13. PubMed ID: 3106298 [TBL] [Abstract][Full Text] [Related]
12. Isolation of Pseudomonas fluorescens producing phenazine derivatives exclusively under strains conditions of iron deficiency. Korth H; Taraz K; Benoni H Zentralbl Bakteriol; 1990 Dec; 274(3):433-5. PubMed ID: 2128604 [TBL] [Abstract][Full Text] [Related]
13. Degradation of diarylethane structures by Pseudomonas fluorescens biovar I. González B; Olave I; Calderón I; Vicuña R Arch Microbiol; 1988; 149(5):389-94. PubMed ID: 3132905 [TBL] [Abstract][Full Text] [Related]
14. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant. Laakso S; Söderling E; Nurmikko V J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833 [TBL] [Abstract][Full Text] [Related]
15. Degradation of cocaine by a mixed culture of Pseudomonas fluorescens MBER and Comamonas acidovorans MBLF. Lister DL; Sproulé RF; Britt AJ; Lowe CR; Bruce NC Appl Environ Microbiol; 1996 Jan; 62(1):94-9. PubMed ID: 8572717 [TBL] [Abstract][Full Text] [Related]
16. Effect of temperature on diauxic growth with glucose and organic acids in Pseudomonas fluorescens. Lynch WH; Franklin M Arch Microbiol; 1978 Aug; 118(2):133-40. PubMed ID: 211975 [TBL] [Abstract][Full Text] [Related]
17. [Degradation of 3,4-dichloroaniline by Pseudomonas fluorescens 26-K]. Travkin VM; Golovleva LA Mikrobiologiia; 2003; 72(2):279-81. PubMed ID: 12751255 [No Abstract] [Full Text] [Related]
18. CO2-fixing enzymes in Pseudomonas fluorescens. Higa AI; Milrad de Forchetti SR; Cazzulo JJ J Gen Microbiol; 1976 Mar; 93(1):69-74. PubMed ID: 816991 [TBL] [Abstract][Full Text] [Related]
19. [Strains of Pseudomonas fluorescens 3 and Arthrobacter sp. 2--degradation of polycyclic aromatic hydrocarbons]. Soroka IaM; Samoĭlenko LS; Gvozdiak PI Mikrobiol Z; 2001; 63(3):65-70. PubMed ID: 11785266 [TBL] [Abstract][Full Text] [Related]
20. Possible physiological roles of aspartase, NAD- and NADP-requiring glutamate dehydrogenases of Pseudomonas fluorescens. Miyamoto K; Katsuki H J Biochem; 1992 Jul; 112(1):52-6. PubMed ID: 1331036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]