These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 811029)

  • 21. Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
    West TP
    Microbiol Res; 2005; 160(4):337-42. PubMed ID: 16255137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7.
    Hasegawa Y; Muraki T; Tokuyama T; Iwaki H; Tatsuno M; Lau PC
    FEMS Microbiol Lett; 2000 Sep; 190(2):185-90. PubMed ID: 11034277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Brunner S; Eppinger E; Fischer S; Gröning J; Stolz A
    World J Microbiol Biotechnol; 2018 Jun; 34(7):91. PubMed ID: 29896645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The antagonism of a pterin, isoxanthopterterin carboxylic acid, with thyroxine, a new analogy with vitamin B1].
    BUSNEL RG; CHAUCHARD P
    C R Seances Soc Biol Fil; 1945; 139(3-4):139. PubMed ID: 21003339
    [No Abstract]   [Full Text] [Related]  

  • 25. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid.
    Lee HJ; Choi MH; Kim TU; Yoon SC
    Appl Environ Microbiol; 2001 Nov; 67(11):4963-74. PubMed ID: 11679314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Fluorene cometabolism by Rhodococcus rhodochrous and Pseudomonas fluorescens].
    Baboshin MA; Finkel'shteĭn ZI; Golovleva LA
    Mikrobiologiia; 2003; 72(2):194-8. PubMed ID: 12751243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Dependence of extracellular proteases synthesis on the growth phase of Pseudomonas fluorescens].
    Mikel'saar PCh; Vilu RO; Lakht TI
    Mikrobiologiia; 1982; 51(2):212-5. PubMed ID: 6806575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixed carbon source effect in the phenazine-alpha-carboxylic acid synthesis and the aromatic pathway in Pseudomonas spp.
    Korth H
    Arch Microbiol; 1974 May; 97(3):245-52. PubMed ID: 4211209
    [No Abstract]   [Full Text] [Related]  

  • 29. [Metabolic products of hydrocarbon-oxidizing strains of Mycococcus lactis and Pseudomonas fluorescens and their influence on culture growth].
    Spitsyna DN; Gradova NB; Davidova EG
    Mikrobiologiia; 1977; 46(6):997-1002. PubMed ID: 414057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.
    Sakthipriya N; Doble M; Sangwai JS
    Environ Sci Process Impacts; 2016 Mar; 18(3):386-97. PubMed ID: 26875795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89.
    Phale PS; Mahajan MC; Vaidyanathan CS
    Arch Microbiol; 1995 Jan; 163(1):42-7. PubMed ID: 7710320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation and mineralization of 3-chlorobiphenyl by a mixed aerobic bacterial culture.
    Fava F; Marchetti L
    Appl Microbiol Biotechnol; 1991 Nov; 36(2):240-5. PubMed ID: 1368111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Final stages of the preliminary metabolism of 2,4,6-trinitrotoluene in Pseudomonas fluorescens].
    Selizanovskaia SIu; Akhmetova DZ; Naumova RP
    Mikrobiologiia; 1986; 55(6):1040-1. PubMed ID: 3102912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic dehalogenation of pentachlorophenol by Pseudomonas fluorescens of the microbial community from tannery effluent.
    Shah S; Thakur IS
    Curr Microbiol; 2003 Jul; 47(1):65-70. PubMed ID: 12783196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid culture carbon, nitrogen and inorganic phosphate source regulate nematicidal activity by fluorescent pseudomonads in vitro.
    Siddiqui IA; Shaukat SS
    Lett Appl Microbiol; 2004; 38(3):185-90. PubMed ID: 14962038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism and biochemical pathway of n-butyl benzyl phthalate by Pseudomonas fluorescens B-1 isolated from a mangrove sediment.
    Xu XR; Li HB; Gu JD
    Ecotoxicol Environ Saf; 2007 Nov; 68(3):379-85. PubMed ID: 17296224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ethylbenzene degradation by Pseudomonas fluorescens strain CA-4.
    Corkery DM; O'Connor KE; Buckley CM; Dobson AD
    FEMS Microbiol Lett; 1994 Nov; 124(1):23-7. PubMed ID: 8001765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerobic biotransformation potential of a commercial mixture of naphthenic acids.
    Misiti TM; Tezel U; Tandukar M; Pavlostathis SG
    Water Res; 2013 Oct; 47(15):5520-34. PubMed ID: 23863388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of autothermostasis of microbial populations and its influence on the growth and gas metabolism of microorganisms].
    Hernádi F; Nagy Zs; Kari Cs; Gábor G
    Mikrobiologiia; 1973; 42(2):445-51. PubMed ID: 4208364
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.