These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 8110747)
1. Studies of the binding specificity of concanavalin A. Nature of the extended binding site for asparagine-linked carbohydrates. Mandal DK; Bhattacharyya L; Koenig SH; Brown RD; Oscarson S; Brewer CF Biochemistry; 1994 Feb; 33(5):1157-62. PubMed ID: 8110747 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of lectin-carbohydrate interactions. Binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to concanavalin A. Gupta D; Dam TK; Oscarson S; Brewer CF J Biol Chem; 1997 Mar; 272(10):6388-92. PubMed ID: 9045661 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A. Mandal DK; Kishore N; Brewer CF Biochemistry; 1994 Feb; 33(5):1149-56. PubMed ID: 8110746 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to Dioclea grandiflora lectin. Dam TK; Oscarson S; Brewer CF J Biol Chem; 1998 Dec; 273(49):32812-7. PubMed ID: 9830027 [TBL] [Abstract][Full Text] [Related]
5. Diocleinae lectins are a group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates. Dam TK; Cavada BS; Grangeiro TB; Santos CF; de Sousa FA; Oscarson S; Brewer CF J Biol Chem; 1998 May; 273(20):12082-8. PubMed ID: 9575151 [TBL] [Abstract][Full Text] [Related]
6. Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the "multivalency effect". Dam TK; Roy R; Das SK; Oscarson S; Brewer CF J Biol Chem; 2000 May; 275(19):14223-30. PubMed ID: 10799500 [TBL] [Abstract][Full Text] [Related]
7. Differential solvation of "core" trimannoside complexes of the Dioclea grandiflora lectin and concanavalin A detected by primary solvent isotope effects in isothermal titration microcalorimetry. Dam TK; Oscarson S; Sacchettini JC; Brewer CF J Biol Chem; 1998 Dec; 273(49):32826-32. PubMed ID: 9830029 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the lectin from Dioclea grandiflora complexed with core trimannoside of asparagine-linked carbohydrates. Rozwarski DA; Swami BM; Brewer CF; Sacchettini JC J Biol Chem; 1998 Dec; 273(49):32818-25. PubMed ID: 9830028 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the fine saccharide-binding specificity of Dioclea grandiflora lectin and concanavalin A. Gupta D; Oscarson S; Raju TS; Stanley P; Toone EJ; Brewer CF Eur J Biochem; 1996 Dec; 242(2):320-6. PubMed ID: 8973650 [TBL] [Abstract][Full Text] [Related]
10. Interactions of asparagine-linked carbohydrates with concanavalin A. Nuclear magnetic relaxation dispersion and circular dichroism studies. Bhattacharyya L; Koenig SH; Brown RD; Brewer CF J Biol Chem; 1991 May; 266(15):9835-40. PubMed ID: 2033071 [TBL] [Abstract][Full Text] [Related]
11. Differences in the binding affinities of dimeric concanavalin A (including acetyl and succinyl derivatives) and tetrameric concanavalin A with large oligomannose-type glycopeptides. Mandal DK; Brewer CF Biochemistry; 1993 May; 32(19):5116-20. PubMed ID: 8494887 [TBL] [Abstract][Full Text] [Related]
13. Specificity of concanavalin A binding to asparagine-linked glycopeptides. A nuclear magnetic relaxation dispersion study. Brewer CF; Bhattacharyya L J Biol Chem; 1986 Jun; 261(16):7306-10. PubMed ID: 3711088 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic binding studies of lectins from the diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides. Dam TK; Cavada BS; Grangeiro TB; Santos CF; Ceccatto VM; de Sousa FA; Oscarson S; Brewer CF J Biol Chem; 2000 May; 275(21):16119-26. PubMed ID: 10747944 [TBL] [Abstract][Full Text] [Related]
15. Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of bisected complex type oligosaccharides. Bhattacharyya L; Haraldsson M; Brewer CF J Biol Chem; 1987 Jan; 262(3):1294-9. PubMed ID: 3805021 [TBL] [Abstract][Full Text] [Related]
16. Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of high mannose and bisected hybrid type glycopeptides. Bhattacharyya L; Ceccarini C; Lorenzoni P; Brewer CF J Biol Chem; 1987 Jan; 262(3):1288-93. PubMed ID: 3805020 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin. Schwarz FP; Puri KD; Bhat RG; Surolia A J Biol Chem; 1993 Apr; 268(11):7668-77. PubMed ID: 8463297 [TBL] [Abstract][Full Text] [Related]
18. Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities. Chervenak MC; Toone EJ Biochemistry; 1995 Apr; 34(16):5685-95. PubMed ID: 7727428 [TBL] [Abstract][Full Text] [Related]
19. Interactions of concanavalin A with asparagine-linked glycopeptides. Structure/activity relationships of the binding and precipitation of oligomannose and bisected hybrid-type glycopeptides with concanavalin A. Bhattacharyya L; Brewer CF Eur J Biochem; 1989 Jan; 178(3):721-6. PubMed ID: 2912731 [TBL] [Abstract][Full Text] [Related]
20. Isothermal titration calorimetric studies on the binding of deoxytrimannoside derivatives with artocarpin: implications for a deep-seated combining site in lectins. Rani PG; Bachhawat K; Reddy GB; Oscarson S; Surolia A Biochemistry; 2000 Sep; 39(35):10755-60. PubMed ID: 10978160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]