BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8110747)

  • 21. Negative cooperativity associated with binding of multivalent carbohydrates to lectins. Thermodynamic analysis of the "multivalency effect".
    Dam TK; Roy R; Pagé D; Brewer CF
    Biochemistry; 2002 Jan; 41(4):1351-8. PubMed ID: 11802737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetics of lectin-carbohydrate binding. A microcalorimetric investigation of concanavalin A-oligomannoside complexation.
    Williams BA; Chervenak MC; Toone EJ
    J Biol Chem; 1992 Nov; 267(32):22907-11. PubMed ID: 1429640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calorimetric study of carbohydrate binding to concanavalin A.
    Munske GR; Krakauer H; Magnuson JA
    Arch Biochem Biophys; 1984 Sep; 233(2):582-7. PubMed ID: 6486801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformation as the determinant of saccharide binding in concanavalin A: Ca2+-concanavalin A complexes.
    Koenig SH; Brewer CF; Brown RD
    Biochemistry; 1978 Oct; 17(20):4251-60. PubMed ID: 708710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional evaluation of carbohydrate-centred glycoclusters by enzyme-linked lectin assay: ligands for concanavalin A.
    Köhn M; Benito JM; Ortiz Mellet C; Lindhorst TK; García Fernández JM
    Chembiochem; 2004 Jun; 5(6):771-7. PubMed ID: 15174159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of metal ion substitutions in concanavalin A on the binding of carbohydrates and on thermal stability.
    Sanders JN; Chenoweth SA; Schwarz FP
    J Inorg Biochem; 1998 May; 70(2):71-82. PubMed ID: 9666569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of aromatic mannosyl disulfide derivatives with concanavalin A: synthesis, thermodynamic and NMR spectroscopy studies.
    Murthy BN; Sinha S; Surolia A; Jayaraman N; Szilágyi L; Szabó I; Kövér KE
    Carbohydr Res; 2009 Sep; 344(13):1758-63. PubMed ID: 19570526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic resonance studies of concanavalin A:CONFORMATIONAL CHANGES INDUCED BY Ca2+ and alpha-methyl-D-mannopyranoside.
    Barber BH; Carver JP
    Can J Biochem; 1975 Mar; 53(3):371-9. PubMed ID: 1125820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic studies of saccharide binding to artocarpin, a B-cell mitogen, reveals the extended nature of its interaction with mannotriose [3,6-Di-O-(alpha-D-mannopyranosyl)-D-mannose].
    Rani PG; Bachhawat K; Misquith S; Surolia A
    J Biol Chem; 1999 Oct; 274(42):29694-8. PubMed ID: 10514441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the combining sites of concanavalin A.
    Goldstein IJ
    Adv Exp Med Biol; 1975; 55():35-53. PubMed ID: 1155247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbohydrate-protein recognition: molecular dynamics simulations and free energy analysis of oligosaccharide binding to concanavalin A.
    Bryce RA; Hillier IH; Naismith JH
    Biophys J; 2001 Sep; 81(3):1373-88. PubMed ID: 11509352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of shape, size, and valency of multivalent mannosides on their binding properties to phytohemagglutinins.
    Roy R; Pagé D; Perez SF; Bencomo VV
    Glycoconj J; 1998 Mar; 15(3):251-63. PubMed ID: 9579802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specificity of C-glycoside complexation by mannose/glucose specific lectins.
    Weatherman RV; Mortell KH; Chervenak M; Kiessling LL; Toone EJ
    Biochemistry; 1996 Mar; 35(11):3619-24. PubMed ID: 8639514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of 4-methylumbelliferyl alpha-D-mannopyranoside to dimeric concanavalin A: fluorescence temperature-jump relaxation study.
    Clegg RM; Loontiens FG; Jovin TM
    Biochemistry; 1977 Jan; 16(2):167-75. PubMed ID: 836782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of concanavalin A with asparagine-linked glycopeptides: formation of homogeneous cross-linked lattices in mixed precipitation systems.
    Bhattacharyya L; Khan MI; Brewer CF
    Biochemistry; 1988 Nov; 27(24):8762-7. PubMed ID: 3242606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The design, synthesis and evaluation of high affinity macrocyclic carbohydrate inhibitors.
    McGavin RS; Gagne RA; Chervenak MC; Bundle DR
    Org Biomol Chem; 2005 Aug; 3(15):2723-32. PubMed ID: 16032350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of the Shiga-like toxin type 1 B-subunit with its carbohydrate receptor.
    St Hilaire PM; Boyd MK; Toone EJ
    Biochemistry; 1994 Dec; 33(48):14452-63. PubMed ID: 7981205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton and deuteron nuclear magnetic relaxation dispersion studies of Ca2+-Mn2+-lentil lectin and Ca2+-Mn2+-pea lectin: evidence for a site of solvent exchange in common with concanavalin A.
    Bhattacharyya L; Brewer CF; Brown RD; Koenig SH
    Biochemistry; 1985 Sep; 24(19):4985-90. PubMed ID: 4074670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-ligand interaction. A calorimetric study of the interaction of oligosaccharides and hen ovalbumin glycopeptides with concanavalin A.
    Ambrosino R; Barone G; Castronuovo G; Ceccarini C; Cultrera O; Elia V
    Biochemistry; 1987 Jun; 26(13):3971-5. PubMed ID: 3651427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies of Highly-Ordered Heterodiantennary Mannose/Glucose-Functionalized Polymers and Concanavalin A Protein Interactions Using Isothermal Titration Calorimetry.
    Loka RS; McConnell MS; Nguyen HM
    Biomacromolecules; 2015 Dec; 16(12):4013-4021. PubMed ID: 26580410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.