These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 8110773)
21. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D; Furutani Y; Kandori H Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036 [TBL] [Abstract][Full Text] [Related]
22. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M; Ihara K; Kandori H Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215 [TBL] [Abstract][Full Text] [Related]
23. Interaction of tryptophan-182 with the retinal 9-methyl group in the L intermediate of bacteriorhodopsin. Yamazaki Y; Sasaki J; Hatanaka M; Kandori H; Maeda A; Needleman R; Shinada T; Yoshihara K; Brown LS; Lanyi JK Biochemistry; 1995 Jan; 34(2):577-82. PubMed ID: 7819252 [TBL] [Abstract][Full Text] [Related]
24. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. Kouyama T; Nishikawa T; Tokuhisa T; Okumura H J Mol Biol; 2004 Jan; 335(2):531-46. PubMed ID: 14672661 [TBL] [Abstract][Full Text] [Related]
25. Tryptophan perturbation in the L intermediate of bacteriorhodopsin: fourier transform infrared analysis with indole-15N shift. Maeda A; Sasaki J; Ohkita YJ; Simpson M; Herzfeld J Biochemistry; 1992 Dec; 31(50):12543-5. PubMed ID: 1472491 [TBL] [Abstract][Full Text] [Related]
26. Hydrogen bonds of water and C==O groups coordinate long-range structural changes in the L photointermediate of bacteriorhodopsin. Yamazaki Y; Tuzi S; Saitô H; Kandori H; Needleman R; Lanyi JK; Maeda A Biochemistry; 1996 Apr; 35(13):4063-8. PubMed ID: 8672440 [TBL] [Abstract][Full Text] [Related]
27. Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle. Hendrickson FM; Burkard F; Glaeser RM Biophys J; 1998 Sep; 75(3):1446-54. PubMed ID: 9726946 [TBL] [Abstract][Full Text] [Related]
28. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy. Maeda A; Sasaki J; Shichida Y; Yoshizawa T; Chang M; Ni B; Needleman R; Lanyi JK Biochemistry; 1992 May; 31(19):4684-90. PubMed ID: 1316157 [TBL] [Abstract][Full Text] [Related]
29. Interaction of internal water molecules with the schiff base in the L intermediate of the bacteriorhodopsin photocycle. Maeda A; Balashov SP; Lugtenburg J; Verhoeven MA; Herzfeld J; Belenky M; Gennis RB; Tomson FL; Ebrey TG Biochemistry; 2002 Mar; 41(11):3803-9. PubMed ID: 11888299 [TBL] [Abstract][Full Text] [Related]
30. Localization and orientation of functional water molecules in bacteriorhodopsin as revealed by polarized Fourier transform infrared spectroscopy. Hatanaka M; Kandori H; Maeda A Biophys J; 1997 Aug; 73(2):1001-6. PubMed ID: 9251817 [TBL] [Abstract][Full Text] [Related]
31. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base. Needleman R; Chang M; Ni B; Váró G; Fornés J; White SH; Lanyi JK J Biol Chem; 1991 Jun; 266(18):11478-84. PubMed ID: 1646807 [TBL] [Abstract][Full Text] [Related]
32. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Kandt C; Gerwert K; Schlitter J Proteins; 2005 Feb; 58(3):528-37. PubMed ID: 15609339 [TBL] [Abstract][Full Text] [Related]
33. Water molecules in the schiff base region of bacteriorhodopsin. Shibata M; Tanimoto T; Kandori H J Am Chem Soc; 2003 Nov; 125(44):13312-3. PubMed ID: 14582999 [TBL] [Abstract][Full Text] [Related]
34. Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. Schobert B; Brown LS; Lanyi JK J Mol Biol; 2003 Jul; 330(3):553-70. PubMed ID: 12842471 [TBL] [Abstract][Full Text] [Related]
35. Effects of arginine-82 on the interactions of internal water molecules in bacteriorhodopsin. Hatanaka M; Sasaki J; Kandori H; Ebrey TG; Needleman R; Lanyi JK; Maeda A Biochemistry; 1996 May; 35(20):6308-12. PubMed ID: 8639574 [TBL] [Abstract][Full Text] [Related]
36. Vibrational frequency and dipolar orientation of the protonated Schiff base in bacteriorhodopsin before and after photoisomerization. Kandori H; Belenky M; Herzfeld J Biochemistry; 2002 May; 41(19):6026-31. PubMed ID: 11993997 [TBL] [Abstract][Full Text] [Related]
37. Water molecule rearrangements around Leu93 and Trp182 in the formation of the L intermediate in bacteriorhodopsin's photocycle. Maeda A; Tomson FL; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2003 Mar; 42(9):2535-41. PubMed ID: 12614147 [TBL] [Abstract][Full Text] [Related]
38. The Schiff base counterion of bacteriorhodopsin is protonated in sensory rhodopsin I: spectroscopic and functional characterization of the mutated proteins D76N and D76A. Rath P; Olson KD; Spudich JL; Rothschild KJ Biochemistry; 1994 May; 33(18):5600-6. PubMed ID: 8180184 [TBL] [Abstract][Full Text] [Related]
39. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
40. Water as a cofactor in the unidirectional light-driven proton transfer steps in bacteriorhodopsin. Maeda A; Morgan JE; Gennis RB; Ebrey TG Photochem Photobiol; 2006; 82(6):1398-405. PubMed ID: 16634652 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]