These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8110778)

  • 1. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    Biochemistry; 1994 Feb; 33(7):1766-70. PubMed ID: 8110778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1993 Sep; 268(26):19377-83. PubMed ID: 8366084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations.
    Rae AS; Strickland KP
    Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity of the two phosphate transport systems of Acinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1994 Jun; 269(23):16212-6. PubMed ID: 8206923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The properties of citrate transport in membrane vesicles from Bacillus subtilis.
    Bergsma J; Konings WN
    Eur J Biochem; 1983 Jul; 134(1):151-6. PubMed ID: 6305655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Mg2+ and ATP on the phosphate transporter of sarcoplasmic reticulum.
    Stefanova HI; Jane SD; East JM; Lee AG
    Biochim Biophys Acta; 1991 May; 1064(2):329-34. PubMed ID: 1645201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A.
    van Veen HW; Abee T; Kortstee GJ; Pereira H; Konings WN; Zehnder AJ
    J Biol Chem; 1994 Nov; 269(47):29509-14. PubMed ID: 7961934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of cations with phosphate uptake by Saccharomyces cerevisiae. Effects of surface potential.
    Roomans GM; Borst-Pauwels GW
    Biochem J; 1979 Mar; 178(3):521-7. PubMed ID: 36883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic studies on E. coli DNA topoisomerase I: divalent ion effects.
    Domanico PL; Tse-Dinh YC
    J Inorg Biochem; 1991 May; 42(2):87-96. PubMed ID: 1649911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium efflux from Escherichia coli. Evidence for two systems.
    Ambudkar SV; Zlotnick GW; Rosen BP
    J Biol Chem; 1984 May; 259(10):6142-6. PubMed ID: 6373751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate exchange in the pit transport system in Escherichia coli.
    Rosenberg H; Russell LM; Jacomb PA; Chegwidden K
    J Bacteriol; 1982 Jan; 149(1):123-30. PubMed ID: 7033203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1975 Oct; 250(19):7687-92. PubMed ID: 240836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.
    Schnetkamp PP
    Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic cation transport and the effects on C4 dicarboxylate transport in Bacillus subtilis.
    Kay WW; Ghei OK
    Can J Microbiol; 1981 Nov; 27(11):1194-201. PubMed ID: 6797714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linked transport of phosphate, potassium ions and protons in Escherichia coli.
    Russell LM; Rosenberg H
    Biochem J; 1979 Oct; 184(1):13-21. PubMed ID: 43137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of calcium to the proteolipid phosphorin.
    Kessler RJ; Vaughn DA; Fanestil DD
    Miner Electrolyte Metab; 1988; 14(2-3):135-41. PubMed ID: 2454386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric effects of divalent cations and protons on active Ca2+ efflux and Ca2+-ATPase in intact red blood cells.
    Xu YH; Roufogalis BD
    J Membr Biol; 1988 Oct; 105(2):155-64. PubMed ID: 2851048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1976 Feb; 251(4):962-7. PubMed ID: 2608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.