BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8110799)

  • 1. Rat liver cytosolic retinal dehydrogenase: comparison of 13-cis-, 9-cis-, and all-trans-retinal as substrates and effects of cellular retinoid-binding proteins and retinoic acid on activity.
    el Akawi Z; Napoli JL
    Biochemistry; 1994 Feb; 33(7):1938-43. PubMed ID: 8110799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of all-trans-retinoic acid from retinal. Recognition of retinal bound to cellular retinol binding protein (type I) as substrate by a purified cytosolic dehydrogenase.
    Posch KC; Burns RD; Napoli JL
    J Biol Chem; 1992 Sep; 267(27):19676-82. PubMed ID: 1527087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sulfhydryl reagents, retinoids, and solubilization on the activity of microsomal retinol dehydrogenase.
    Boerman MH; Napoli JL
    Arch Biochem Biophys; 1995 Aug; 321(2):434-41. PubMed ID: 7646070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning of a rat cDNA encoding retinal dehydrogenase isozyme type I and its expression in E. coli.
    Penzes P; Wang X; Sperkova Z; Napoli JL
    Gene; 1997 Jun; 191(2):167-72. PubMed ID: 9218716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids.
    Belyaeva OV; Korkina OV; Stetsenko AV; Kim T; Nelson PS; Kedishvili NY
    Biochemistry; 2005 May; 44(18):7035-47. PubMed ID: 15865448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic oxidation of all-trans retinal to retinoic acid in rat tissues.
    Bhat PV; Poissant L; Falardeau P; Lacroix A
    Biochem Cell Biol; 1988 Jul; 66(7):735-40. PubMed ID: 3179018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular retinol-binding protein-supported retinoic acid synthesis. Relative roles of microsomes and cytosol.
    Boerman MH; Napoli JL
    J Biol Chem; 1996 Mar; 271(10):5610-6. PubMed ID: 8621422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic formation of 9-cis, 13-cis, and all-trans retinals from isomers of beta-carotene.
    Nagao A; Olson JA
    FASEB J; 1994 Sep; 8(12):968-73. PubMed ID: 8088462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro formation of retinoic acid from retinal in rat liver.
    Hupert J; Mobarhan S; Layden TJ; Papa VM; Lucchesi DJ
    Biochem Cell Biol; 1991 Aug; 69(8):509-14. PubMed ID: 1760155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel isoenzyme of aldehyde dehydrogenase specifically involved in the biosynthesis of 9-cis and all-trans retinoic acid.
    Labrecque J; Dumas F; Lacroix A; Bhat PV
    Biochem J; 1995 Jan; 305 ( Pt 2)(Pt 2):681-4. PubMed ID: 7832787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of retinoic acid formation.
    Wolf G
    Nutr Rev; 1996 Jun; 54(6):182-4. PubMed ID: 8810827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates.
    Gagnon I; Duester G; Bhat PV
    Biochim Biophys Acta; 2002 Apr; 1596(1):156-62. PubMed ID: 11983430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic characteristics of retinal dehydrogenase type I expressed in Escherichia coli.
    Penzes P; Wang X; Napoli JL
    Biochim Biophys Acta; 1997 Oct; 1342(2):175-81. PubMed ID: 9392526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of all-trans, 9-cis, and 13-cis isomers of retinal by purified isozymes of microsomal cytochrome P450 and mechanism-based inhibition of retinoid oxidation by citral.
    Raner GM; Vaz AD; Coon MJ
    Mol Pharmacol; 1996 Mar; 49(3):515-22. PubMed ID: 8643091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of monkey RALDH1 and characterization of retinoid metabolism in monkey kidney proximal tubule cells.
    Brodeur H; Gagnon I; Mader S; Bhat PV
    J Lipid Res; 2003 Feb; 44(2):303-13. PubMed ID: 12576512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic characterization of recombinant mouse retinal dehydrogenase type 1.
    Gagnon I; Duester G; Bhat PV
    Biochem Pharmacol; 2003 May; 65(10):1685-90. PubMed ID: 12754104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsomes convert retinol and retinal into retinoic acid and interfere in the conversions catalyzed by cytosol.
    Napoli JL; Race KR
    Biochim Biophys Acta; 1990 May; 1034(2):228-32. PubMed ID: 2354194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of a novel cytosolic NADP(H)-dependent retinol oxidoreductase from rabbit liver.
    Huang DY; Ichikawa Y
    Biochim Biophys Acta; 1997 Mar; 1338(1):47-59. PubMed ID: 9074615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative Biotransformation of Retinal to Retinoic Acid or Retinol by an Aldehyde Dehydrogenase from Bacillus cereus.
    Hong SH; Ngo HP; Nam HK; Kim KR; Kang LW; Oh DK
    Appl Environ Microbiol; 2016 Jul; 82(13):3940-3946. PubMed ID: 27107124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two different enzymes are primarily responsible for retinoic acid synthesis in rabbit liver cytosol.
    Huang DY; Ichikawa Y
    Biochem Biophys Res Commun; 1994 Dec; 205(2):1278-83. PubMed ID: 7802659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.