BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8110961)

  • 1. On the consensus structure within the E. coli promoters.
    Nair TM; Kulkarni BD
    Biophys Chem; 1994 Jan; 48(3):383-93. PubMed ID: 8110961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of DNA bending in various regions of a consensus-like Escherichia coli promoter on its strength in vivo and structure of the open complex in vitro.
    Lozinski T; Adrych-Rozek K; Markiewicz WT; Wierzchowski K
    Nucleic Acids Res; 1991 Jun; 19(11):2947-53. PubMed ID: 2057353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sigma s-dependent promoters in Escherichia coli are located in DNA regions with intrinsic curvature.
    Espinosa-Urgel M; Tormo A
    Nucleic Acids Res; 1993 Aug; 21(16):3667-70. PubMed ID: 8367283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sequence upstream of the -10 consensus sequence modulates the strength and induction time of stationary-phase promoters in Escherichia coli.
    Miksch G; Bettenworth F; Friehs K; Flaschel E
    Appl Microbiol Biotechnol; 2005 Dec; 69(3):312-20. PubMed ID: 16088348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence distributions associated with DNA curvature are found upstream of strong E. coli promoters.
    Plaskon RR; Wartell RM
    Nucleic Acids Res; 1987 Jan; 15(2):785-96. PubMed ID: 3547329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of reversed orientation and length of An.Tn DNA bending sequences in the -35 and spacer domains of a consensus-like Escherichia coli promoter on its strength in vivo and gross structure of the open complex in vitro.
    Loziński T; Wierzchowski KL
    Acta Biochim Pol; 1996; 43(1):265-79. PubMed ID: 8790731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA structural atlas for Escherichia coli.
    Pedersen AG; Jensen LJ; Brunak S; Staerfeldt HH; Ussery DW
    J Mol Biol; 2000 Jun; 299(4):907-30. PubMed ID: 10843847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies.
    Hillebrand A; Wurm R; Menzel A; Wagner R
    Biol Chem; 2005 Jun; 386(6):523-34. PubMed ID: 16006239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase.
    Newlands JT; Ross W; Gosink KK; Gourse RL
    J Mol Biol; 1991 Aug; 220(3):569-83. PubMed ID: 1651394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome analysis of Escherichia coli promoter sequences evidences that DNA static curvature plays a more important role in gene transcription than has previously been anticipated.
    Olivares-Zavaleta N; Jáuregui R; Merino E
    Genomics; 2006 Mar; 87(3):329-37. PubMed ID: 16413165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streptococcus pneumoniae possesses canonical Escherichia coli (sigma 70) promoters.
    Morrison DA; Jaurin B
    Mol Microbiol; 1990 Jul; 4(7):1143-52. PubMed ID: 2233251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A common structural feature in promoter sequences of E. coli.
    Tung CS; Harvey SC
    Nucleic Acids Res; 1987 Jun; 15(12):4973-85. PubMed ID: 3299261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential influence of DNA supercoiling on in vivo strength of promoters varying in structure and organisation in E. coli.
    Jyothirmai G; Mishra RK
    FEBS Lett; 1994 Mar; 340(3):189-92. PubMed ID: 8131843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S).
    Becker G; Hengge-Aronis R
    Mol Microbiol; 2001 Mar; 39(5):1153-65. PubMed ID: 11251833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The -16 region, a vital sequence for the utilization of a promoter in Bacillus subtilis and Escherichia coli.
    Voskuil MI; Voepel K; Chambliss GH
    Mol Microbiol; 1995 Jul; 17(2):271-9. PubMed ID: 7494476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The organization of open complexes between Escherichia coli RNA polymerase and DNA fragments carrying promoters either with or without consensus -35 region sequences.
    Chan B; Spassky A; Busby S
    Biochem J; 1990 Aug; 270(1):141-8. PubMed ID: 2204341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of strong promoters from Clavibacter xyli subsp. cynodontis using a promoter probe plasmid.
    Haapalainen M; Karp M; Metzler MC
    Biochim Biophys Acta; 1996 Mar; 1305(3):130-4. PubMed ID: 8597597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location of close contacts between Escherichia coli RNA polymerase and guanine residues at promoters either with or without consensus -35 region sequences.
    Minchin S; Busby S
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):771-5. PubMed ID: 8435074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gel-concentration-independent retardation detected in two fragments of the rrnB P1 promoter of E. coli using transverse polyacrylamide pore gradient gel electrophoresis.
    Wheeler D
    Biochem Biophys Res Commun; 1993 May; 193(1):413-9. PubMed ID: 8389150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli promoters. I. Consensus as it relates to spacing class, specificity, repeat substructure, and three-dimensional organization.
    O'Neill MC
    J Biol Chem; 1989 Apr; 264(10):5522-30. PubMed ID: 2647720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.