These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8111074)

  • 21. In vivo calibration of the subcutaneous amperometric glucose sensors using a non-enzyme electrode.
    Jeong RA; Hwang JY; Joo S; Chung TD; Park S; Kang SK; Lee WY; Kim HC
    Biosens Bioelectron; 2003 Dec; 19(4):313-9. PubMed ID: 14615088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implantable glucose sensors: comparison between in vitro and in vivo kinetics.
    von Woedtke T; Fischer U; Brunstein E; Rebrin K; Abel P
    Int J Artif Organs; 1991 Aug; 14(8):473-81. PubMed ID: 1937938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subcutaneous glucose monitoring by means of electrochemical sensors: fiction or reality?
    Rebrin K; Fischer U; Hahn von Dorsche H; von Woetke T; Abel P; Brunstein E
    J Biomed Eng; 1992 Jan; 14(1):33-40. PubMed ID: 1569738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients.
    Shaw GW; Claremont DJ; Pickup JC
    Biosens Bioelectron; 1991; 6(5):401-6. PubMed ID: 1910665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating.
    Moussy F; Harrison DJ; O'Brien DW; Rajotte RV
    Anal Chem; 1993 Aug; 65(15):2072-7. PubMed ID: 8372970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans.
    Gilligan BC; Shults M; Rhodes RK; Jacobs PG; Brauker JH; Pintar TJ; Updike SJ
    Diabetes Technol Ther; 2004 Jun; 6(3):378-86. PubMed ID: 15198842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel.
    Linke B; Kerner W; Kiwit M; Pishko M; Heller A
    Biosens Bioelectron; 1994; 9(2):151-8. PubMed ID: 8018316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled deposition of glucose oxidase on platinum electrode based on an avidin/biotin system for the regulation of output current of glucose sensors.
    Hoshi T; Anzai J; Osa T
    Anal Chem; 1995 Feb; 67(4):770-4. PubMed ID: 7702192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A glucose biosensor based on an oxygen electrode: in-vitro performances in model buffer solution and in blood plasma.
    Yang S; Atanasov P; Wilkins E
    Biomed Instrum Technol; 1996; 30(1):55-61. PubMed ID: 8850596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats.
    Bobbioni-Harsch E; Rohner-Jeanrenaud F; Koudelka M; de Rooij N; Jeanrenaud B
    J Biomed Eng; 1993 Nov; 15(6):457-63. PubMed ID: 8277748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defining the period of recovery of the glucose concentration after its local perturbation by the implantation of a miniature sensor.
    Chen T; Schmidtke DW; Heller A
    Clin Chem Lab Med; 2002 Aug; 40(8):786-9. PubMed ID: 12392305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for calibrating a subcutaneous glucose sensor.
    Velho G; Froguel P; Thevenot DR; Reach G
    Biomed Biochim Acta; 1989; 48(11-12):957-64. PubMed ID: 2700068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calibration in dogs of a subcutaneous miniaturized glucose sensor using a glucose meter for blood glucose determination.
    Poitout V; Moatti-Sirat D; Reach G
    Biosens Bioelectron; 1992; 7(8):587-92. PubMed ID: 1457093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amperometric glucose sensors based on immobilized glucose oxidase-polyquinone system.
    Kaku T; Karan HI; Okamoto Y
    Anal Chem; 1994 Apr; 66(8):1231-5. PubMed ID: 8210040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rise in background current over time in a subcutaneous glucose sensor in the rabbit: relevance to calibration and accuracy.
    Ward WK; Wood MD; Troupe JE
    Biosens Bioelectron; 2000 Mar; 15(1-2):53-61. PubMed ID: 10826643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the independent variable to glucose sensor calibration.
    Panteleon AE; Rebrin K; Steil GM
    Diabetes Technol Ther; 2003; 5(3):401-10. PubMed ID: 12828824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated feedback control of subcutaneous glucose concentration in diabetic dogs.
    Rebrin K; Fischer U; von Woedtke T; Abel P; Brunstein E
    Diabetologia; 1989 Aug; 32(8):573-6. PubMed ID: 2673892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs.
    Claremont DJ; Sambrook IE; Penton C; Pickup JC
    Diabetologia; 1986 Nov; 29(11):817-21. PubMed ID: 3545958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing glucose sensors for in vivo use.
    Pickup J
    Trends Biotechnol; 1993 Jul; 11(7):285-91. PubMed ID: 7763951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study.
    Hoss U; Jeddi I; Schulz M; Budiman E; Bhogal C; McGarraugh G
    Diabetes Technol Ther; 2010 Aug; 12(8):591-7. PubMed ID: 20615099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.