These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8111534)

  • 21. Kinetics of extractable residue, bound residue and mineralization of a novel herbicide, ZJ0273, in aerobic soils.
    Wang H; Ye Q; Yue L; Yu Z; Han A; Yang Z; Lu L
    Chemosphere; 2009 Aug; 76(8):1036-40. PubMed ID: 19481777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.
    Karishma M; Trivedi VD; Choudhary A; Mhatre A; Kambli P; Desai J; Phale PS
    FEMS Microbiol Lett; 2015 Oct; 362(20):. PubMed ID: 26316546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the adhesion of Pseudomonas putida NCIB 9816-4 to a silica gel as a model soil using extended DLVO theory.
    Hwang G; Lee CH; Ahn IS; Mhin BJ
    J Hazard Mater; 2010 Jul; 179(1-3):983-8. PubMed ID: 20399555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator.
    Moreno R; Rojo F
    J Bacteriol; 2008 Mar; 190(5):1539-45. PubMed ID: 18156252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of cloned genes of Pseudomonas TOL plasmid to effect biotransformation of benzoates to cis-dihydrodiols and catechols by Escherichia coli cells.
    Zeyer J; Lehrbach PR; Timmis KN
    Appl Environ Microbiol; 1985 Dec; 50(6):1409-13. PubMed ID: 3911905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73.
    Niu GL; Zhang JJ; Zhao S; Liu H; Boon N; Zhou NY
    Environ Pollut; 2009 Mar; 157(3):763-71. PubMed ID: 19108939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86.
    Basu A; Phale PS
    FEMS Microbiol Lett; 2006 Jun; 259(2):311-6. PubMed ID: 16734795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Pseudomonas putida mt-2.
    Velázquez F; Parro V; de Lorenzo V
    Mol Microbiol; 2005 Sep; 57(6):1557-69. PubMed ID: 16135224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Reversed-phase high performance liquid chromatography of the products of microbiological degradation of toluene ].
    Zelenkova NF; Arinbasarov MU
    Prikl Biokhim Mikrobiol; 2003; 39(2):199-201. PubMed ID: 12722654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benzoate transport in Pseudomonas putida CSV86.
    Choudhary A; Purohit H; Phale PS
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28591829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Ban YM; Lee CH; Chung CH; Ahn IS
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):91-6. PubMed ID: 18023561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene.
    Jensen LB; Ramos JL; Kaneva Z; Molin S
    Appl Environ Microbiol; 1993 Nov; 59(11):3713-7. PubMed ID: 8285679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid.
    Rodríguez-Herva JJ; García V; Hurtado A; Segura A; Ramos JL
    Environ Microbiol; 2007 Jun; 9(6):1550-61. PubMed ID: 17504492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS.
    Carl B; Fetzner S
    Appl Environ Microbiol; 2005 Dec; 71(12):8618-26. PubMed ID: 16332855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a cis-acting sequence within the Pm promoter of the TOL plasmid which confers XylS-mediated responsiveness to substituted benzoates.
    Kessler B; de Lorenzo V; Timmis KN
    J Mol Biol; 1993 Apr; 230(3):699-703. PubMed ID: 8478926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavior of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial environmental samples.
    Shintani M; Matsui K; Takemura T; Yamane H; Nojiri H
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):485-97. PubMed ID: 18592232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil.
    Park W; Madsen EL
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):209-16. PubMed ID: 15278309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria.
    Roslev P; Larsen MB; Jørgensen D; Hesselsoe M
    J Microbiol Methods; 2004 Dec; 59(3):381-93. PubMed ID: 15488281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous plug-flow bioreactor: experimental testing with Pseudomonas putida culture grown on benzoate.
    Voloshin Y; Lawal A; Panikov NS
    Biotechnol Bioeng; 2005 Jul; 91(2):254-9. PubMed ID: 15895381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis.
    Kim YH; Cho K; Yun SH; Kim JY; Kwon KH; Yoo JS; Kim SI
    Proteomics; 2006 Feb; 6(4):1301-18. PubMed ID: 16470664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.