These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 811183)
1. Prolonged retention of glutaraldehyde-treated skin allografts and xenografts: immunological and histological studies. Schechter I Ann Surg; 1975 Dec; 182(6):699-704. PubMed ID: 811183 [TBL] [Abstract][Full Text] [Related]
2. Effects of glutaraldehyde on experimental arterial iso- and allografts in rats. Dumont CE; Plissonnier D; Guettier C; Michel JB J Surg Res; 1993 Jan; 54(1):61-9. PubMed ID: 8429640 [TBL] [Abstract][Full Text] [Related]
3. Antigenicity of cryopreserved arterial allografts: comparison with fresh and glutaraldehyde treated grafts. Moriyama S; Utoh J; Sun LB; Tagami H; Okamoto K; Kunitomo R; Kitamura N ASAIO J; 2001; 47(3):202-5. PubMed ID: 11374757 [TBL] [Abstract][Full Text] [Related]
4. The activity of inducible nitric oxide synthase in rejected skin xenografts is selectively inhibited by a factor produced by grafted cells. Holán V; Pindjáková J; Zajícová A; Krulová M; Zelezná B; Matousek P; Svoboda P Xenotransplantation; 2005 May; 12(3):227-34. PubMed ID: 15807773 [TBL] [Abstract][Full Text] [Related]
6. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. Allaire E; Guettier C; Bruneval P; Plissonnier D; Michel JB J Vasc Surg; 1994 Mar; 19(3):446-56. PubMed ID: 8126857 [TBL] [Abstract][Full Text] [Related]
7. Functional capacity of solid tissue transplants in the brain: evidence for immunological privilege. Head JR; Griffin WS Proc R Soc Lond B Biol Sci; 1985 May; 224(1236):375-87. PubMed ID: 2862633 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of corneal xenograft rejection in a discordant species combination. Ross JR; Howell DN; Sanfilippo FP Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2469-76. PubMed ID: 8325753 [TBL] [Abstract][Full Text] [Related]
9. The vascular bed as the primary target in the destruction of skin grafts by antiserum. II. Loss of sensitivity to antiserum in long-term xenografts of skin. Jooste SV; Colvin RB; Winn HJ J Exp Med; 1981 Nov; 154(5):1332-41. PubMed ID: 6795300 [TBL] [Abstract][Full Text] [Related]
10. Donor and recipient leukocytes in organ allografts of recipients with variable donor-specific tolerance: with particular reference to chronic rejection. Ichikawa N; Demetris AJ; Starzl TE; Ye Q; Okuda T; Chun HJ; Liu K; Kim YM; Murase N Liver Transpl; 2000 Nov; 6(6):686-702. PubMed ID: 11084053 [TBL] [Abstract][Full Text] [Related]
11. Prolonged retention of glutaraldehyde-treated skin homografts in humans. Schechter I; Belldegrin A; Ben-Basat M; Kaplan I Br J Plast Surg; 1975 Jul; 28(3):198-202. PubMed ID: 811292 [TBL] [Abstract][Full Text] [Related]
12. Organ-specific differences in the function of MCP-1 and CXCR3 during cardiac and skin allograft rejection. Haskova Z; Izawa A; Contreras AG; Flynn E; Boulday G; Briscoe DM Transplantation; 2007 Jun; 83(12):1595-601. PubMed ID: 17589343 [TBL] [Abstract][Full Text] [Related]
13. Early up-regulation of CXC-chemokine expression is associated with strong cellular immune responses to murine skin xenografts. Lee EM; Park JO; Kim D; Kim JY; Oh KH; Park CG; Oh BH; Kim S; Ahn C Xenotransplantation; 2006 Jul; 13(4):328-36. PubMed ID: 16768726 [TBL] [Abstract][Full Text] [Related]
14. Susceptibility of corneal allografts and xenografts to antibody-mediated rejection. Holán V; Vítová A; Krulová M; Zajícová A; Neuwirth A; Filipec M; Forrester JV Immunol Lett; 2005 Sep; 100(2):211-3. PubMed ID: 15869803 [TBL] [Abstract][Full Text] [Related]
15. Genetically engineered grafts to study xenoimmunity: a role for indirect antigen presentation in the destruction of major histocompatibility complex antigen deficient xenografts. Markmann JF; Campos L; Bhandoola A; Kim JI; Desai NM; Bassiri H; Claytor BR; Barker CF Surgery; 1994 Aug; 116(2):242-8; discussion 248-9. PubMed ID: 8047991 [TBL] [Abstract][Full Text] [Related]
16. Graft survival and cytokine production profile after limbal transplantation in the experimental mouse model. Lenčová A; Pokorná K; Zajícová A; Krulová M; Filipec M; Holáň V Transpl Immunol; 2011 Apr; 24(3):189-94. PubMed ID: 21118723 [TBL] [Abstract][Full Text] [Related]
17. The behavior of H-Y-incompatible neonatal skin grafts in rats. Silvers WK; Collins NH Transplantation; 1979 Jul; 28(1):57-9. PubMed ID: 377596 [TBL] [Abstract][Full Text] [Related]
18. Combined treatment of glatiramer acetate and low doses of immunosuppressive drugs is effective in the prevention of graft rejection. Aharoni R; Yussim A; Sela M; Arnon R Int Immunopharmacol; 2005 Jan; 5(1):23-32. PubMed ID: 15589456 [TBL] [Abstract][Full Text] [Related]
19. A comparison of immune response to nerve and skin allografts. Trumble T; Gunlikson R; Parvin D J Reconstr Microsurg; 1993 Sep; 9(5):367-72. PubMed ID: 8301635 [TBL] [Abstract][Full Text] [Related]
20. Trafficking of donor-derived bone marrow correlates with chimerism and extension of composite allograft survival across MHC barrier. Ozmen S; Ulusal BG; Ulusal AE; Izycki D; Yoder B; Siemionow M Transplant Proc; 2006 Jun; 38(5):1625-33. PubMed ID: 16797371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]