These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8112221)

  • 1. A refined three-dimensional solution structure of a carboxy terminal fragment of apolipoprotein CII.
    Ohman A; Lycksell PO; Gräslund A
    Eur Biophys J; 1993; 22(5):351-7. PubMed ID: 8112221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence specific 1H-NMR assignments and secondary structure of a carboxy-terminal functional fragment of apolipoprotein CII.
    Lycksell PO; Ohman A; Bengtsson-Olivecrona G; Johansson LB; Wijmenga SS; Wernic D; Gräslund A
    Eur J Biochem; 1992 Apr; 205(1):223-31. PubMed ID: 1555583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a biologically active fragment of human serum apolipoprotein C-II in the presence of sodium dodecyl sulfate and dodecylphosphocholine.
    Storjohann R; Rozek A; Sparrow JT; Cushley RJ
    Biochim Biophys Acta; 2000 Jul; 1486(2-3):253-64. PubMed ID: 10903476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase.
    Zdunek J; Martinez GV; Schleucher J; Lycksell PO; Yin Y; Nilsson S; Shen Y; Olivecrona G; Wijmenga S
    Biochemistry; 2003 Feb; 42(7):1872-89. PubMed ID: 12590574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of two peptides corresponding to human apolipoprotein C-I residues 7-24 and 35-53 in the presence of sodium dodecyl sulfate by CD and NMR spectroscopy.
    Rozek A; Buchko GW; Cushley RJ
    Biochemistry; 1995 Jun; 34(22):7401-8. PubMed ID: 7779782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The solution structure of motilin from NMR distance constraints, distance geometry, molecular dynamics, and an iterative full relaxation matrix refinement.
    Edmondson S; Khan N; Shriver J; Zdunek J; Gräslund A
    Biochemistry; 1991 Nov; 30(47):11271-9. PubMed ID: 1958665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate.
    MacRaild CA; Hatters DM; Howlett GJ; Gooley PR
    Biochemistry; 2001 May; 40(18):5414-21. PubMed ID: 11331005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution conformation on bovine growth hormone releasing factor by 1H NMR and molecular modeling.
    Kweon J; Lee HJ; Kim YM; Choi YS; Lee KB
    FEBS Lett; 1999 Aug; 456(2):343-8. PubMed ID: 10456336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance solution structure of the Arc repressor using relaxation matrix calculations.
    Bonvin AM; Vis H; Breg JN; Burgering MJ; Boelens R; Kaptein R
    J Mol Biol; 1994 Feb; 236(1):328-41. PubMed ID: 8107113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid binding of apolipoprotein CII is required for stimulation of lipoprotein lipase activity against apolipoprotein CII-deficient chylomicrons.
    Olivecrona G; Beisiegel U
    Arterioscler Thromb Vasc Biol; 1997 Aug; 17(8):1545-9. PubMed ID: 9301634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of human parathyroid hormone(1-34) in the presence of solvents and micelles.
    Strickland LA; Bozzato RP; Kronis KA
    Biochemistry; 1993 Jun; 32(23):6050-7. PubMed ID: 8507641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational studies of the N-terminal lipid-associating domain of human apolipoprotein C-I by CD and 1H NMR spectroscopy.
    Rozek A; Buchko GW; Kanda P; Cushley RJ
    Protein Sci; 1997 Sep; 6(9):1858-68. PubMed ID: 9300485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of human apolipoprotein C-I in a lipid-mimetic environment determined by CD and NMR spectroscopy.
    Rozek A; Sparrow JT; Weisgraber KH; Cushley RJ
    Biochemistry; 1999 Nov; 38(44):14475-84. PubMed ID: 10545169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR.
    Sipos D; Andersson M; Ehrenberg A
    Eur J Biochem; 1992 Oct; 209(1):163-9. PubMed ID: 1396696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary structure of the bovine analogues to human apolipoproteins CII and CIII. Studies on isoforms and evidence for proteolytic processing.
    Bengtsson-Olivecrona G; Sletten K
    Eur J Biochem; 1990 Sep; 192(2):515-21. PubMed ID: 2209608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of a DNA octamer containing the Pribnow box via restrained molecular dynamics simulation with distance and torsion angle constraints derived from two-dimensional nuclear magnetic resonance spectral fitting.
    Schmitz U; Sethson I; Egan WM; James TL
    J Mol Biol; 1992 Sep; 227(2):510-31. PubMed ID: 1404366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete relaxation matrix refinement of NMR structures of proteins using analytically calculated dihedral angle derivatives of NOE intensities.
    Mertz JE; Güntert P; Wüthrich K; Braun W
    J Biomol NMR; 1991 Sep; 1(3):257-69. PubMed ID: 1841698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies of a baboon (Papio sp.) plasma protein inhibitor of cholesteryl ester transferase.
    Buchko GW; Rozek A; Kanda P; Kennedy MA; Cushley RJ
    Protein Sci; 2000 Aug; 9(8):1548-58. PubMed ID: 10975576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-specific 1H NMR resonance assignments and secondary structure of human apolipoprotein C-I in the presence of sodium dodecyl sulfate.
    Rozek A; Sparrow JT; Weisgraber KH; Cushley RJ
    Biochem Cell Biol; 1998; 76(2-3):267-75. PubMed ID: 9923695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of [d(GTATATAC)]2 via restrained molecular dynamics simulations with nuclear magnetic resonance constraints derived from relaxation matrix analysis of two-dimensional nuclear Overhauser effect experiments.
    Schmitz U; Pearlman DA; James TL
    J Mol Biol; 1991 Sep; 221(1):271-92. PubMed ID: 1920410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.