These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8112339)

  • 41. DNA-binding and dimerization domains of adenosine 3',5'- cyclic monophosphate-responsive protein CREB reside in the carboxyl-terminal 66 amino acids.
    Yun YD; Dumoulin M; Habener JF
    Mol Endocrinol; 1990 Jun; 4(6):931-9. PubMed ID: 2146495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dimerization of leucine zippers analyzed by random selection.
    Pu WT; Struhl K
    Nucleic Acids Res; 1993 Sep; 21(18):4348-55. PubMed ID: 8414991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changing fos oncoprotein to a jun-independent DNA binding protein with GCN4 dimerization specificity by swapping "leucine zippers".
    Sellers JW; Struhl K
    Nature; 1989 Sep; 341(6237):74-6. PubMed ID: 2505087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The chicken junD gene and its product.
    Hartl M; Hutchins JT; Vogt PK
    Oncogene; 1991 Sep; 6(9):1623-31. PubMed ID: 1923529
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 'Zipbody' leucine zipper-fused Fab in E. coli in vitro and in vivo expression systems.
    Ojima-Kato T; Fukui K; Yamamoto H; Hashimura D; Miyake S; Hirakawa Y; Yamasaki T; Kojima T; Nakano H
    Protein Eng Des Sel; 2016 Apr; 29(4):149-57. PubMed ID: 26902097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli.
    Dmitrova M; Younès-Cauet G; Oertel-Buchheit P; Porte D; Schnarr M; Granger-Schnarr M
    Mol Gen Genet; 1998 Jan; 257(2):205-12. PubMed ID: 9491079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of CYS3 regulator function in Neurospora crassa by modification of leucine zipper dimerization specificity.
    Paietta JV
    Nucleic Acids Res; 1995 Mar; 23(6):1044-9. PubMed ID: 7731792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fos leucine zipper variants with increased association capacity.
    Porte D; Oertel-Buchheit P; Granger-Schnarr M; Schnarr M
    J Biol Chem; 1995 Sep; 270(39):22721-30. PubMed ID: 7559397
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Jun DNA-binding is modulated by mutations between the leucines or by direct interaction of fos with the TGACTCA sequence.
    Hirai S; Yaniv M
    New Biol; 1989 Nov; 1(2):181-91. PubMed ID: 2562220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. fos-jun Conspiracy: implications for the cell.
    Verma IM; Ransone LJ; Visvader J; Sassone-Corsi P; Lamph WW
    Princess Takamatsu Symp; 1989; 20():119-26. PubMed ID: 2518685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mouse vimentin: structural relationship to fos, jun, CREB and tpr.
    Capetanaki Y; Kuisk I; Rothblum K; Starnes S
    Oncogene; 1990 May; 5(5):645-55. PubMed ID: 2140597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural determinants outside of the leucine zipper influence the interactions of CREB and ATF-2: interaction of CREB with ATF-2 blocks E1a-ATF-2 complex formation.
    Abdel-Hafiz HA; Chen CY; Marcell T; Kroll DJ; Hoeffler JP
    Oncogene; 1993 May; 8(5):1161-74. PubMed ID: 8479741
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The leucine zippers of the HLH-LZ proteins Max and c-Myc preferentially form heterodimers.
    Muhle-Goll C; Nilges M; Pastore A
    Biochemistry; 1995 Oct; 34(41):13554-64. PubMed ID: 7577944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc.
    Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K
    J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A transcription factor with a leucine-zipper motif involved in light-dependent inhibition of expression of the puf operon in the photosynthetic bacterium Rhodobacter sphaeroides.
    Shimada H; Wada T; Handa H; Ohta H; Mizoguchi H; Nishimura K; Masuda T; Shioi Y; Takamiya K
    Plant Cell Physiol; 1996 Jun; 37(4):515-22. PubMed ID: 8759915
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-hybrid system for characterization of protein-protein interactions in E. coli.
    Hays LB; Chen YS; Hu JC
    Biotechniques; 2000 Aug; 29(2):288-90, 292, 294 passim. PubMed ID: 10948430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Addition of positively charged tripeptide to N-terminus of the Fos basic region leucine zipper domain: implications on DNA bending, affinity, and specificity.
    Mahmoudi T; Sarkar B
    Biopolymers; 1999 Sep; 50(3):273-86. PubMed ID: 10397789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. IS911 transposition is regulated by protein-protein interactions via a leucine zipper motif.
    Haren L; Normand C; Polard P; Alazard R; Chandler M
    J Mol Biol; 2000 Feb; 296(3):757-68. PubMed ID: 10677279
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct cloning of leucine zipper proteins: Jun binds cooperatively to the CRE with CRE-BP1.
    Macgregor PF; Abate C; Curran T
    Oncogene; 1990 Apr; 5(4):451-8. PubMed ID: 2139203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Short, hydrophobic, alanine-based proteins based on the basic region/leucine zipper protein motif: overcoming inclusion body formation and protein aggregation during overexpression, purification, and renaturation.
    Lajmi AR; Wallace TR; Shin JA
    Protein Expr Purif; 2000 Apr; 18(3):394-403. PubMed ID: 10733895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.