These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 8112344)
1. Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. Murray NJ; Williamson MP; Lilley TH; Haslam E Eur J Biochem; 1994 Feb; 219(3):923-35. PubMed ID: 8112344 [TBL] [Abstract][Full Text] [Related]
2. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Baxter NJ; Lilley TH; Haslam E; Williamson MP Biochemistry; 1997 May; 36(18):5566-77. PubMed ID: 9154941 [TBL] [Abstract][Full Text] [Related]
6. The structure and function of proline-rich regions in proteins. Williamson MP Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):249-60. PubMed ID: 8297327 [No Abstract] [Full Text] [Related]
7. Conformational study of a salivary proline-rich protein repeat sequence. Murray NJ; Williamson MP Eur J Biochem; 1994 Feb; 219(3):915-21. PubMed ID: 8112343 [TBL] [Abstract][Full Text] [Related]
8. Interactions between a non glycosylated human proline-rich protein and flavan-3-ols are affected by protein concentration and polyphenol/protein ratio. Pascal C; Poncet-Legrand C; Imberty A; Gautier C; Sarni-Manchado P; Cheynier V; Vernhet A J Agric Food Chem; 2007 Jun; 55(12):4895-901. PubMed ID: 17503833 [TBL] [Abstract][Full Text] [Related]
9. Bactericidal activity and poly-L-proline II conformation of the tandem repeat sequence of human salivary mucin glycoprotein (MG2). Antonyraj KJ; Karunakaran T; Raj PA Arch Biochem Biophys; 1998 Aug; 356(2):197-206. PubMed ID: 9705210 [TBL] [Abstract][Full Text] [Related]
10. Interaction of plant polyphenols with salivary proteins. Bennick A Crit Rev Oral Biol Med; 2002; 13(2):184-96. PubMed ID: 12097360 [TBL] [Abstract][Full Text] [Related]
15. The location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins. Bennick A; McLaughlin AC; Grey AA; Madapallimattam G J Biol Chem; 1981 May; 256(10):4741-6. PubMed ID: 7228855 [TBL] [Abstract][Full Text] [Related]
16. Molecular model for astringency produced by polyphenol/protein interactions. Jöbstl E; O'Connell J; Fairclough JP; Williamson MP Biomacromolecules; 2004; 5(3):942-9. PubMed ID: 15132685 [TBL] [Abstract][Full Text] [Related]
17. Role of peptide primary sequence in polyphenol-protein recognition: an example with neurotensin. Richard T; Vitrac X; Merillon JM; Monti JP Biochim Biophys Acta; 2005 Nov; 1726(3):238-43. PubMed ID: 16249055 [TBL] [Abstract][Full Text] [Related]
18. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects. Cala O; Pinaud N; Simon C; Fouquet E; Laguerre M; Dufourc EJ; Pianet I FASEB J; 2010 Nov; 24(11):4281-90. PubMed ID: 20605948 [TBL] [Abstract][Full Text] [Related]
19. Proline-rich proteins--deriving a basis for residue-based selectivity in polyphenolic binding. Croft AK; Foley MK Org Biomol Chem; 2008 May; 6(9):1594-600. PubMed ID: 18421391 [TBL] [Abstract][Full Text] [Related]
20. Influence of the glycosylation of human salivary proline-rich proteins on their interactions with condensed tannins. Sarni-Manchado P; Canals-Bosch JM; Mazerolles G; Cheynier V J Agric Food Chem; 2008 Oct; 56(20):9563-9. PubMed ID: 18808139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]