BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 8112347)

  • 1. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families.
    Alexander FW; Sandmeier E; Mehta PK; Christen P
    Eur J Biochem; 1994 Feb; 219(3):953-60. PubMed ID: 8112347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes.
    Mehta PK; Christen P
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():129-84. PubMed ID: 10800595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases.
    Sandmeier E; Hale TI; Christen P
    Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From cofactor to enzymes. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes.
    Christen P; Mehta PK
    Chem Rec; 2001; 1(6):436-47. PubMed ID: 11933250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pyridoxal-phosphate-dependent enzymes exclusively catalyzing reactions of beta-replacement.
    Braunstein AE; Goryachenkova EV
    Biochimie; 1976; 58(1-2):5-17. PubMed ID: 782560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. l-Threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. A subgroup of strictly related enzymes specialized for different functions.
    Contestabile R; Paiardini A; Pascarella S; di Salvo ML; D'Aguanno S; Bossa F
    Eur J Biochem; 2001 Dec; 268(24):6508-25. PubMed ID: 11737206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of pyridoxal phosphate dependent enzymes by mono- and polyhaloalanines.
    Silverman RB; Abeles RH
    Biochemistry; 1976 Oct; 15(21):4718-23. PubMed ID: 974085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The primitive protozoon Trichomonas vaginalis contains two methionine gamma-lyase genes that encode members of the gamma-family of pyridoxal 5'-phosphate-dependent enzymes.
    McKie AE; Edlind T; Walker J; Mottram JC; Coombs GH
    J Biol Chem; 1998 Mar; 273(10):5549-56. PubMed ID: 9488680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyridoxal 5'-phosphate dependent enzymes in the nematode Nippostrongylus brasiliensis.
    Walker J; Barrett J
    Int J Parasitol; 1991 Oct; 21(6):641-9. PubMed ID: 1757192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of aminoacrylate intermediates of pyridoxal-5'-phosphate dependent enzymes.
    Phillips RS; Bauer O
    Methods Enzymol; 2023; 685():199-224. PubMed ID: 37245902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rates of evolution of pyridoxal-5'-phosphate-dependent enzymes.
    Salzmann D; Christen P; Mehta PK; Sandmeier E
    Biochem Biophys Res Commun; 2000 Apr; 270(2):576-80. PubMed ID: 10753666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereochemical constraint in the evolution of pyridoxal-5'-phosphate-dependent enzymes. A hypothesis.
    Christen P; Kasper P; Gehring H; Sterk M
    FEBS Lett; 1996 Jun; 389(1):12-4. PubMed ID: 8682195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology of pyridoxal-5'-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC (p-aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products.
    Mehta PK; Christen P
    Eur J Biochem; 1993 Jan; 211(1-2):373-6. PubMed ID: 8425548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction mechanism of Escherichia coli cystathionine gamma-synthase: direct evidence for a pyridoxamine derivative of vinylglyoxylate as a key intermediate in pyridoxal phosphate dependent gamma-elimination and gamma-replacement reactions.
    Brzović P; Holbrook EL; Greene RC; Dunn MF
    Biochemistry; 1990 Jan; 29(2):442-51. PubMed ID: 2405904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkylglycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with aminotransferases.
    Mehta PK; Christen P
    Biochem Biophys Res Commun; 1994 Jan; 198(1):138-43. PubMed ID: 8292015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for glutamate-333 of Saccharomyces cerevisiae cystathionine γ-lyase as a determinant of specificity.
    Hopwood EM; Ahmed D; Aitken SM
    Biochim Biophys Acta; 2014 Feb; 1844(2):465-72. PubMed ID: 24291053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common structural elements in the architecture of the cofactor-binding domains in unrelated families of pyridoxal phosphate-dependent enzymes.
    Denessiouk KA; Denesyuk AI; Lehtonen JV; Korpela T; Johnson MS
    Proteins; 1999 May; 35(2):250-61. PubMed ID: 10223296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme.
    Vacca RA; Giannattasio S; Capitani G; Marra E; Christen P
    BMC Biochem; 2008 Jun; 9():17. PubMed ID: 18565210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of enzymatic specificity in the Cys-Met-metabolism PLP-dependent enzymes family: crystal structure of cystathionine gamma-lyase from yeast and intrafamiliar structure comparison.
    Messerschmidt A; Worbs M; Steegborn C; Wahl MC; Huber R; Laber B; Clausen T
    Biol Chem; 2003 Mar; 384(3):373-86. PubMed ID: 12715888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions of O-acyl-L-serines with tryptophanase, tyrosine phenol-lyase, and tryptophan synthase.
    Phillips RS
    Arch Biochem Biophys; 1987 Jul; 256(1):302-10. PubMed ID: 3111376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.