These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 8112991)
21. Membrane polarity of the Na(+)-K+ pump in primary cultures of Xenopus retinal pigment epithelium. Defoe DM; Ahmad A; Chen W; Hughes BA Exp Eye Res; 1994 Nov; 59(5):587-96. PubMed ID: 9492760 [TBL] [Abstract][Full Text] [Related]
22. The kinetics of transport of lactate and pyruvate into isolated cardiac myocytes from guinea pig. Kinetic evidence for the presence of a carrier distinct from that in erythrocytes and hepatocytes. Poole RC; Halestrap AP; Price SJ; Levi AJ Biochem J; 1989 Dec; 264(2):409-18. PubMed ID: 2604725 [TBL] [Abstract][Full Text] [Related]
23. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells. Wang Q; Morris ME Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341 [TBL] [Abstract][Full Text] [Related]
24. Characterization of brimonidine transport in retinal pigment epithelium. Zhang N; Kannan R; Okamoto CT; Ryan SJ; Lee VH; Hinton DR Invest Ophthalmol Vis Sci; 2006 Jan; 47(1):287-94. PubMed ID: 16384975 [TBL] [Abstract][Full Text] [Related]
25. Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport. Kannan R; Tang D; Hu J; Bok D Exp Eye Res; 2001 Jun; 72(6):661-6. PubMed ID: 11384154 [TBL] [Abstract][Full Text] [Related]
26. A Na/H exchange mechanism in apical membrane vesicles of the retinal pigment epithelium. Zadunaisky JA; Kinne-Saffran E; Kinne R Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2332-40. PubMed ID: 2553638 [TBL] [Abstract][Full Text] [Related]
27. Modification by cyclic adenosine monophosphate of basolateral membrane chloride conductance in chick retinal pigment epithelium. Kuntz CA; Crook RB; Dmitriev A; Steinberg RH Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):422-33. PubMed ID: 8112990 [TBL] [Abstract][Full Text] [Related]
28. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Edlund GL; Halestrap AP Biochem J; 1988 Jan; 249(1):117-26. PubMed ID: 3342001 [TBL] [Abstract][Full Text] [Related]
29. Chloride secretion by bovine ciliary epithelium: a model of aqueous humor formation. Do CW; To CH Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1853-60. PubMed ID: 10845609 [TBL] [Abstract][Full Text] [Related]
30. Vestibular dark cells contain an H+/monocarboxylate- cotransporter in their apical and basolateral membrane. Shimozono M; Liu J; Scofield MA; Wangemann P J Membr Biol; 1998 May; 163(1):37-46. PubMed ID: 9569248 [TBL] [Abstract][Full Text] [Related]
31. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi. Wang X; Levi AJ; Halestrap AP Am J Physiol; 1994 Nov; 267(5 Pt 2):H1759-69. PubMed ID: 7977806 [TBL] [Abstract][Full Text] [Related]
32. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486 [TBL] [Abstract][Full Text] [Related]
33. Lactate-proton co-transport and its contribution to interstitial acidification during hypoxia in isolated rat spinal roots. Schneider U; Poole RC; Halestrap AP; Grafe P Neuroscience; 1993 Apr; 53(4):1153-62. PubMed ID: 8389429 [TBL] [Abstract][Full Text] [Related]
34. L-lactate transport in Ehrlich ascites-tumour cells. Spencer TL; Lehninger AL Biochem J; 1976 Feb; 154(2):405-14. PubMed ID: 7237 [TBL] [Abstract][Full Text] [Related]
35. A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle. Mason MJ; Thomas RC J Physiol; 1988 Jun; 400():459-79. PubMed ID: 3262155 [TBL] [Abstract][Full Text] [Related]
36. Kinetics of lactate and pyruvate transport in cultured rat myotubes. von Grumbckow L; Elsner P; Hellsten Y; Quistorff B; Juel C Biochim Biophys Acta; 1999 Mar; 1417(2):267-75. PubMed ID: 10082802 [TBL] [Abstract][Full Text] [Related]
37. Influence of organic acids on intracellular pH. de Hemptinne A; Marrannes R; Vanheel B Am J Physiol; 1983 Sep; 245(3):C178-83. PubMed ID: 6614155 [TBL] [Abstract][Full Text] [Related]
38. Substrate and inhibitor specificities of the monocarboxylate transporters of single rat heart cells. Wang X; Levi AJ; Halestrap AP Am J Physiol; 1996 Feb; 270(2 Pt 2):H476-84. PubMed ID: 8779821 [TBL] [Abstract][Full Text] [Related]
39. Lactate transport in mammalian ventricle. General properties and relation to K+ fluxes. Shieh RC; Goldhaber JI; Stuart JS; Weiss JN Circ Res; 1994 May; 74(5):829-38. PubMed ID: 8156630 [TBL] [Abstract][Full Text] [Related]
40. Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Hamann S; Kiilgaard JF; la Cour M; Prause JU; Zeuthen T Exp Eye Res; 2003 Apr; 76(4):493-504. PubMed ID: 12634113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]