These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 8113014)

  • 1. A proximal retinal component in the primate photopic ERG a-wave.
    Bush RA; Sieving PA
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):635-45. PubMed ID: 8113014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2500-7. PubMed ID: 12091456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave.
    Sieving PA; Murayama K; Naarendorp F
    Vis Neurosci; 1994; 11(3):519-32. PubMed ID: 8038126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of retinal neurons to d-wave of primate photopic electroretinograms.
    Ueno S; Kondo M; Ueno M; Miyata K; Terasaki H; Miyake Y
    Vision Res; 2006 Mar; 46(5):658-64. PubMed ID: 16039691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina.
    Rangaswamy NV; Frishman LJ; Dorotheo EU; Schiffman JS; Bahrani HM; Tang RA
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3827-37. PubMed ID: 15452095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal origins of the primate multifocal ERG: implications for the human response.
    Hood DC; Frishman LJ; Saszik S; Viswanathan S
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1673-85. PubMed ID: 11980890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminance dependence of neural components that underlies the primate photopic electroretinogram.
    Ueno S; Kondo M; Niwa Y; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1033-40. PubMed ID: 14985327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.
    Sugawara T; Sieving PA; Bush RA
    Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits.
    Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG.
    Rangaswamy NV; Hood DC; Frishman LJ
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3233-47. PubMed ID: 12824276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primate Retinal Signaling Pathways: Suppressing ON-Pathway Activity in Monkey With Glutamate Analogues Mimics Human CSNB1-NYX Genetic Night Blindness.
    Khan NW; Kondo M; Hiriyanna KT; Jamison JA; Bush RA; Sieving PA
    J Neurophysiol; 2005 Jan; 93(1):481-92. PubMed ID: 15331616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preservation of inner retinal responses in the aged Royal College of Surgeons rat. Evidence against glutamate excitotoxicity in photoreceptor degeneration.
    Bush RA; Hawks KW; Sieving PA
    Invest Ophthalmol Vis Sci; 1995 Sep; 36(10):2054-62. PubMed ID: 7657544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photopic electroretinograms of mGluR6-deficient mice.
    Koyasu T; Kondo M; Miyata K; Ueno S; Miyata T; Nishizawa Y; Terasaki H
    Curr Eye Res; 2008 Jan; 33(1):91-9. PubMed ID: 18214746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gradient of retinal functional changes during acute intraocular pressure elevation.
    Bui BV; Edmunds B; Cioffi GA; Fortune B
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):202-13. PubMed ID: 15623775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Spectral Characteristics of Ganzfeld Stimuli on the Photopic Negative Response (PhNR) of the ERG.
    Rangaswamy NV; Shirato S; Kaneko M; Digby BI; Robson JG; Frishman LJ
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4818-28. PubMed ID: 17898309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human melanoma-associated retinopathy (MAR) antibodies alter the retinal ON-response of the monkey ERG in vivo.
    Lei B; Bush RA; Milam AH; Sieving PA
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):262-6. PubMed ID: 10634629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreceptor and post-photoreceptoral contributions to photopic ERG a-wave in rhodopsin P347L transgenic rabbits.
    Hirota R; Kondo M; Ueno S; Sakai T; Koyasu T; Terasaki H
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1467-72. PubMed ID: 22273723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inner retinal contributions to the primate photopic fast flicker electroretinogram.
    Bush RA; Sieving PA
    J Opt Soc Am A Opt Image Sci Vis; 1996 Mar; 13(3):557-65. PubMed ID: 8627412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scotopic threshold response (STR) of the human electroretinogram.
    Sieving PA; Nino C
    Invest Ophthalmol Vis Sci; 1988 Nov; 29(11):1608-14. PubMed ID: 3182195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.