These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 8113111)

  • 1. A theoretical model for input impedance of interstitial microwave antennas with choke.
    Wong TZ; Trembly BS
    Int J Radiat Oncol Biol Phys; 1994 Feb; 28(3):673-82. PubMed ID: 8113111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory.
    Ryan TP; Mechling JA; Strohbehn JW
    Int J Radiat Oncol Biol Phys; 1990 Aug; 19(2):377-87. PubMed ID: 2394617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design optimization of interstitial antennas.
    Iskander MF; Tumeh AM
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):238-46. PubMed ID: 2917769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable helical coil microwave antenna for interstitial hyperthermia.
    Satoh T; Stauffer PR
    Int J Hyperthermia; 1988; 4(5):497-512. PubMed ID: 3392424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and optimization of the electromagnetic performance of interstitial antennas for hyperthermia.
    Iskander MF; Tumeh AM; Furse CM
    Int J Radiat Oncol Biol Phys; 1990 Apr; 18(4):895-902. PubMed ID: 2323978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of heating patterns of a microwave interstitial antenna array at various insertion depths.
    Zhang Y; Joines WT; Oleson JR
    Int J Hyperthermia; 1991; 7(1):197-207. PubMed ID: 2051073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Design and implementation of an improved invasive antenna for microwave hyperthermia].
    Xue Q; Sun B; Chen L; Wang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Nov; 34(6):427-30. PubMed ID: 21360981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia.
    Satoh T; Stauffer PR; Fike JR
    Int J Radiat Oncol Biol Phys; 1988 Nov; 15(5):1209-18. PubMed ID: 3182353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia.
    James BJ; Strohbehn JW; Mechling JA; Trembly BS
    Int J Hyperthermia; 1989; 5(6):733-47. PubMed ID: 2592787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain hyperthermia: I. Interstitial microwave antenna array techniques--the Dartmouth experience.
    Ryan TP; Trembly BS; Roberts DW; Strohbehn JW; Coughlin CT; Hoopes PJ
    Int J Radiat Oncol Biol Phys; 1994 Jul; 29(5):1065-78. PubMed ID: 8083075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characterization of helical coil microwave antenna for interstitial hyperthermia].
    Satoh T; Stauffer PR; Fike JR
    Gan No Rinsho; 1988 Sep; 34(11):1544-9. PubMed ID: 3184458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of improved microwave interstitial antennas for local hyperthermia.
    Sathiaseelan V; Leybovich L; Emami B; Stauffer P; Straube W
    Int J Radiat Oncol Biol Phys; 1991 Mar; 20(3):531-9. PubMed ID: 1995539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: longitudinal control of heating patterns.
    Hamada L; Saito K; Yoshimura H; Ito K
    Int J Hyperthermia; 2000; 16(3):219-29. PubMed ID: 10830585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue.
    Mechling JA; Strohbehn JW; Ryan TP
    Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of microwave interstitial antennas in the phantom with varying cross-section.
    Leybovich LB; Kurup RG
    Int J Radiat Oncol Biol Phys; 1993 Jan; 25(1):105-12. PubMed ID: 8416865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement.
    Pisa S; Cavagnaro M; Bernardi P; Lin JC
    IEEE Trans Biomed Eng; 2001 May; 48(5):599-601. PubMed ID: 11341534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coaxial antenna with miniaturized choke for minimally invasive interstitial heating.
    Longo I; Gentili GB; Cerretelli M; Tosoratti N
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):82-8. PubMed ID: 12617527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.