These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 8113111)

  • 21. Air cooling for an interstitial microwave hyperthermia antenna: theory and experiment.
    Eppert V; Trembly BS; Richter HJ
    IEEE Trans Biomed Eng; 1991 May; 38(5):450-60. PubMed ID: 1874527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some aspects of optimization of an invasive microwave antenna for local hyperthermia treatment of cancer.
    de Sieyes DC; Douple EB; Strohbehn JW; Trembly BS
    Med Phys; 1981; 8(2):174-83. PubMed ID: 7322045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation.
    Brace CL
    Med Phys; 2011 Jul; 38(7):4232-40. PubMed ID: 21859025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interstitial helical coil microwave antenna for experimental brain hyperthermia.
    Satoh T; Seilhan TM; Stauffer PR; Sneed PK; Fike JR
    Neurosurgery; 1988 Nov; 23(5):564-9. PubMed ID: 3059216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new microwave applicator with integrated cooling system for intracavitary hyperthermia of vaginal carcinoma.
    Roos D; Seegenschmiedt MH; Klautke G; Erb J; Sorbe B
    Int J Hyperthermia; 1996; 12(6):743-56. PubMed ID: 8950155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models.
    Mechling JA; Strohbehn JW; France LJ
    Int J Hyperthermia; 1991; 7(3):465-83. PubMed ID: 1919142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Research on the hyperthermia-therapy performances of invasive microwave antennas].
    Yang GS; Liu YH; Wang JQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):170-1, 217. PubMed ID: 16104297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 915 MHz microwave interstitial hyperthermia. Part II: Array of phase-monitored antennas.
    Camart JC; Dubois L; Fabre JJ; Vanloot D; Chive M
    Int J Hyperthermia; 1993; 9(3):445-54. PubMed ID: 8515146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumour shape-dependent microwave hyperthermia using a novel coaxial micro-cut slot antenna.
    Shamekhi L; Sayehvand HO; Karami H
    J Therm Biol; 2020 Feb; 88():102473. PubMed ID: 32126004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional theoretical SAR and temperature distributions created in brain tissue by 915 and 2450 MHz dipole antenna arrays with varying insertion depths.
    Mechling JA; Strohbehn JW
    Int J Hyperthermia; 1992; 8(4):529-42. PubMed ID: 1402132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The distribution of power and heat produced by interstitial microwave antenna arrays: I. Comparative phantom and canine studies.
    Denman DL; Elson HR; Lewis GC; Breneman JC; Clausen CL; Dine J; Aron BS
    Int J Radiat Oncol Biol Phys; 1988 Jan; 14(1):127-37. PubMed ID: 3335448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental brain hyperthermia: techniques for heat delivery and thermometry.
    Ryan TP; Hoopes PJ; Taylor JH; Strohbehn JW; Roberts DW; Douple EB; Coughlin CT
    Int J Radiat Oncol Biol Phys; 1991 Apr; 20(4):739-50. PubMed ID: 2004950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 915 MHz microwave interstitial hyperthermia. Part I: Theoretical and experimental aspects with temperature control by multifrequency radiometry.
    Fabre JJ; Chive M; Dubois L; Camart JC; Playez E; Prevost B; Vanseymortier L; Rohart J
    Int J Hyperthermia; 1993; 9(3):433-44. PubMed ID: 8515145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cap-choke catheter antenna for microwave ablation treatment.
    Lin JC; Wang YJ
    IEEE Trans Biomed Eng; 1996 Jun; 43(6):657-60. PubMed ID: 8987271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catheter microwave ablation therapy for cardiac arrhythmias.
    Lin JC
    Bioelectromagnetics; 1999; Suppl 4():120-32. PubMed ID: 10334721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phantom evaluation of heating of superficial tissues located above interstitial microwave antennas.
    Leybovich LB; Devanna WG; Gray AC; Kurup RG; Fan CJ
    Int J Radiat Oncol Biol Phys; 1993 Sep; 27(1):101-8. PubMed ID: 8365930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interstitial microwave antennas for thermal therapy.
    Lin JC; Wang YJ
    Int J Hyperthermia; 1987; 3(1):37-47. PubMed ID: 3559297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.