These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8113242)

  • 1. Optimization of extruded collagen fibers for ACL reconstruction.
    Dunn MG; Avasarala PN; Zawadsky JP
    J Biomed Mater Res; 1993 Dec; 27(12):1545-52. PubMed ID: 8113242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds.
    Caruso AB; Dunn MG
    J Biomed Mater Res A; 2005 Jun; 73(4):388-97. PubMed ID: 15880693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment.
    Weadock KS; Miller EJ; Bellincampi LD; Zawadsky JP; Dunn MG
    J Biomed Mater Res; 1995 Nov; 29(11):1373-9. PubMed ID: 8582905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of purified reconstituted type 1 collagen fibers.
    Law JK; Parsons JR; Silver FH; Weiss AB
    J Biomed Mater Res; 1989 Sep; 23(9):961-77. PubMed ID: 2506188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional evaluation of collagen fiber scaffolds for ACL reconstruction: cyclic loading in proteolytic enzyme solutions.
    Caruso AB; Dunn MG
    J Biomed Mater Res A; 2004 Apr; 69(1):164-71. PubMed ID: 14999764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraosseous incorporation of composite collagen prostheses designed for ligament reconstruction.
    Dunn MG; Maxian SH; Zawadsky JP
    J Orthop Res; 1994 Jan; 12(1):128-37. PubMed ID: 8113935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACL reconstruction using a novel hybrid scaffold composed of polyarylate fibers and collagen fibers.
    Tovar N; Murthy NS; Kohn J; Gatt C; Dunn M
    J Biomed Mater Res A; 2012 Nov; 100(11):2913-20. PubMed ID: 22696232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen fibers as a temporary scaffold for replacement of ACL in goats.
    Chvapil M; Speer DP; Holubec H; Chvapil TA; King DH
    J Biomed Mater Res; 1993 Mar; 27(3):313-25. PubMed ID: 8360201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anterior cruciate ligament reconstruction using a composite collagenous prosthesis. A biomechanical and histologic study in rabbits.
    Dunn MG; Tria AJ; Kato YP; Bechler JR; Ochner RS; Zawadsky JP; Silver FH
    Am J Sports Med; 1992; 20(5):507-15. PubMed ID: 1443316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantation sites and fiber diameters affect the rate of degradation in absorbable polydioxanone fibers.
    Kimura S; Yasuda K; Hara N; Sakai T; Mikami S; Minami A; Tohyama H
    Arthroscopy; 2003 Jan; 19(1):68-74. PubMed ID: 12522405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the length of virtual anterior cruciate ligament fibers during stability testing: a comparison of conventional single-bundle reconstruction and native anterior cruciate ligament.
    Brophy RH; Voos JE; Shannon FJ; Granchi CC; Wickiewicz TL; Warren RF; Pearle AD
    Am J Sports Med; 2008 Nov; 36(11):2196-203. PubMed ID: 18669985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of combined administration of transforming growth factor-beta1 and epidermal growth factor on properties of the in situ frozen anterior cruciate ligament in rabbits.
    Sakai T; Yasuda K; Tohyama H; Azuma H; Nagumo A; Majima T; Frank CB
    J Orthop Res; 2002 Nov; 20(6):1345-51. PubMed ID: 12472251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of two types of cross-linking on some mechanical properties of collagen.
    Thompson JI; Czernuszka JT
    Biomed Mater Eng; 1995; 5(1):37-48. PubMed ID: 7773145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction.
    Panas-Perez E; Gatt CJ; Dunn MG
    J Mater Sci Mater Med; 2013 Jan; 24(1):257-65. PubMed ID: 23053810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of properties of collagen membranes before and after crosslinked].
    Chen L; Lv Y; Guan L; Wang Y; He L; Li Y; Bai C; Liu D; Pei X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):183-7. PubMed ID: 18365615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability.
    Qiu W; Teng W; Cappello J; Wu X
    Biomacromolecules; 2009 Mar; 10(3):602-8. PubMed ID: 19186950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(anhydride-ester) fibers: role of copolymer composition on hydrolytic degradation and mechanical properties.
    Whitaker-Brothers K; Uhrich K
    J Biomed Mater Res A; 2004 Aug; 70(2):309-18. PubMed ID: 15227676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development.
    Dasgupta A; Sori N; Petrova S; Maghdouri-White Y; Thayer N; Kemper N; Polk S; Leathers D; Coughenour K; Dascoli J; Palikonda R; Donahue C; Bulysheva AA; Francis MP
    Acta Biomater; 2021 Jul; 128():186-200. PubMed ID: 33878472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.