BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8113242)

  • 1. Optimization of extruded collagen fibers for ACL reconstruction.
    Dunn MG; Avasarala PN; Zawadsky JP
    J Biomed Mater Res; 1993 Dec; 27(12):1545-52. PubMed ID: 8113242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds.
    Caruso AB; Dunn MG
    J Biomed Mater Res A; 2005 Jun; 73(4):388-97. PubMed ID: 15880693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment.
    Weadock KS; Miller EJ; Bellincampi LD; Zawadsky JP; Dunn MG
    J Biomed Mater Res; 1995 Nov; 29(11):1373-9. PubMed ID: 8582905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of purified reconstituted type 1 collagen fibers.
    Law JK; Parsons JR; Silver FH; Weiss AB
    J Biomed Mater Res; 1989 Sep; 23(9):961-77. PubMed ID: 2506188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional evaluation of collagen fiber scaffolds for ACL reconstruction: cyclic loading in proteolytic enzyme solutions.
    Caruso AB; Dunn MG
    J Biomed Mater Res A; 2004 Apr; 69(1):164-71. PubMed ID: 14999764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraosseous incorporation of composite collagen prostheses designed for ligament reconstruction.
    Dunn MG; Maxian SH; Zawadsky JP
    J Orthop Res; 1994 Jan; 12(1):128-37. PubMed ID: 8113935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACL reconstruction using a novel hybrid scaffold composed of polyarylate fibers and collagen fibers.
    Tovar N; Murthy NS; Kohn J; Gatt C; Dunn M
    J Biomed Mater Res A; 2012 Nov; 100(11):2913-20. PubMed ID: 22696232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen fibers as a temporary scaffold for replacement of ACL in goats.
    Chvapil M; Speer DP; Holubec H; Chvapil TA; King DH
    J Biomed Mater Res; 1993 Mar; 27(3):313-25. PubMed ID: 8360201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anterior cruciate ligament reconstruction using a composite collagenous prosthesis. A biomechanical and histologic study in rabbits.
    Dunn MG; Tria AJ; Kato YP; Bechler JR; Ochner RS; Zawadsky JP; Silver FH
    Am J Sports Med; 1992; 20(5):507-15. PubMed ID: 1443316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantation sites and fiber diameters affect the rate of degradation in absorbable polydioxanone fibers.
    Kimura S; Yasuda K; Hara N; Sakai T; Mikami S; Minami A; Tohyama H
    Arthroscopy; 2003 Jan; 19(1):68-74. PubMed ID: 12522405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the length of virtual anterior cruciate ligament fibers during stability testing: a comparison of conventional single-bundle reconstruction and native anterior cruciate ligament.
    Brophy RH; Voos JE; Shannon FJ; Granchi CC; Wickiewicz TL; Warren RF; Pearle AD
    Am J Sports Med; 2008 Nov; 36(11):2196-203. PubMed ID: 18669985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of combined administration of transforming growth factor-beta1 and epidermal growth factor on properties of the in situ frozen anterior cruciate ligament in rabbits.
    Sakai T; Yasuda K; Tohyama H; Azuma H; Nagumo A; Majima T; Frank CB
    J Orthop Res; 2002 Nov; 20(6):1345-51. PubMed ID: 12472251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of two types of cross-linking on some mechanical properties of collagen.
    Thompson JI; Czernuszka JT
    Biomed Mater Eng; 1995; 5(1):37-48. PubMed ID: 7773145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction.
    Panas-Perez E; Gatt CJ; Dunn MG
    J Mater Sci Mater Med; 2013 Jan; 24(1):257-65. PubMed ID: 23053810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of properties of collagen membranes before and after crosslinked].
    Chen L; Lv Y; Guan L; Wang Y; He L; Li Y; Bai C; Liu D; Pei X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):183-7. PubMed ID: 18365615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability.
    Qiu W; Teng W; Cappello J; Wu X
    Biomacromolecules; 2009 Mar; 10(3):602-8. PubMed ID: 19186950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(anhydride-ester) fibers: role of copolymer composition on hydrolytic degradation and mechanical properties.
    Whitaker-Brothers K; Uhrich K
    J Biomed Mater Res A; 2004 Aug; 70(2):309-18. PubMed ID: 15227676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development.
    Dasgupta A; Sori N; Petrova S; Maghdouri-White Y; Thayer N; Kemper N; Polk S; Leathers D; Coughenour K; Dascoli J; Palikonda R; Donahue C; Bulysheva AA; Francis MP
    Acta Biomater; 2021 Jul; 128():186-200. PubMed ID: 33878472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.