These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 811341)

  • 21. Oxidation of 3-deoxy-3-fluoro-D-glucose by cell-free extracts of Pseudomonas fluorescens.
    Taylor NF; White FH; Eisenthal R
    Biochem Pharmacol; 1972 Feb; 21(3):347-53. PubMed ID: 4622560
    [No Abstract]   [Full Text] [Related]  

  • 22. Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants.
    Vicente M; Cánovas JL
    J Bacteriol; 1973 Nov; 116(2):908-14. PubMed ID: 4745434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida.
    Sasnow SS; Wei H; Aristilde L
    Microbiologyopen; 2016 Feb; 5(1):3-20. PubMed ID: 26377487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The uptake of 2-ketogluconate by Pseudomonas putida.
    Torrontegui D; Díaz R; Cánovas JL
    Arch Microbiol; 1976 Oct; 110(1):43-8. PubMed ID: 1015939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predominance of gluconate formation from glucose during germination of Bacillus megaterium QM B1551 spores.
    Otani M; Ihara N; Umezawa C; Sano K
    J Bacteriol; 1986 Jul; 167(1):148-52. PubMed ID: 3013833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of growth temperature on the lipids of Pseudomonas fluorescens.
    Gill CO
    J Gen Microbiol; 1975 Aug; 89(2):293-8. PubMed ID: 809540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose, gluconate, and 2-ketogluconate oxidation by Acetobacter melanogenum.
    KATZNELSON H; TANENBAUM SW; TATUM EL
    J Biol Chem; 1953 Sep; 204(1):43-59. PubMed ID: 13084576
    [No Abstract]   [Full Text] [Related]  

  • 28. [Effect of the medium composition on the accumulation of 2-keto-D-gluconic acid in Pseudomonas putida cultures].
    Voloshenko MI; Disler EN; Komarova GV
    Prikl Biokhim Mikrobiol; 1987; 23(2):199-203. PubMed ID: 3575266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbohydrate oxidation by Pseudomonas fluorescens VI. Conversion of 2-keto-6-phosphogluconate to pyruvate.
    FRAMPTON EW; WOOD WA
    J Biol Chem; 1961 Oct; 236():2571-7. PubMed ID: 13894458
    [No Abstract]   [Full Text] [Related]  

  • 30. SOME EFFECTS OF CARBON SOURCE, AERATION, AND TEMPERATURE ON GROWTH OF A PSYCHROPHILIC STRAIN OF PSEUDOMONAS FLUORESCENS.
    OLSEN RH; JEZESKI JJ
    J Bacteriol; 1963 Sep; 86(3):429-33. PubMed ID: 14066418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PATTERNS OF OXIDATIVE ASSIMILATION IN STRAINS OF PSEUDOMONAS AND ACHROMOBACTER.
    TOMLINSON GA; CAMPBELL JJ
    J Bacteriol; 1963 Sep; 86(3):434-44. PubMed ID: 14066419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species.
    Thomas KL; Lloyd D; Boddy L
    FEMS Microbiol Lett; 1994 May; 118(1-2):181-6. PubMed ID: 8013877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate.
    Sun WJ; Zhou YZ; Zhou Q; Cui FJ; Yu SL; Sun L
    Bioresour Technol; 2012 Apr; 110():546-51. PubMed ID: 22326336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gluconic acid-producing Pseudomonas sp. prevent γ-actinorhodin biosynthesis by Streptomyces coelicolor A3(2).
    Galet J; Deveau A; Hôtel L; Leblond P; Frey-Klett P; Aigle B
    Arch Microbiol; 2014 Sep; 196(9):619-27. PubMed ID: 24906569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the growth kinetics and proteolytic activities of Chryseobacterium species and Pseudomonas fluorescens.
    Bekker A; Steyn L; Charimba G; Jooste P; Hugo C
    Can J Microbiol; 2015 Dec; 61(12):977-82. PubMed ID: 26451905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant.
    Laakso S; Söderling E; Nurmikko V
    J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The uptake of glucose and gluconate by Pseudomonas putida.
    Vicente M; Pedro MA; Torrontegui G; Cánovas JL
    Mol Cell Biochem; 1975 Apr; 7(1):59-64. PubMed ID: 1134500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water relations of solute accumulation in Pseudomonas fluorescens.
    Prior BA; Kenyon CP; van der Veen M; Mildenhall JP
    J Appl Bacteriol; 1987 Feb; 62(2):119-28. PubMed ID: 2883169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of diarylethane structures by Pseudomonas fluorescens biovar I.
    González B; Olave I; Calderón I; Vicuña R
    Arch Microbiol; 1988; 149(5):389-94. PubMed ID: 3132905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular oxidation of D-glucose by some members of the Enterobacteriaceae.
    Bouvet OM; Grimont PA
    Ann Inst Pasteur Microbiol; 1988; 139(1):59-77. PubMed ID: 3382545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.