These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8113781)

  • 1. Central projection of auditory receptors in the prothoracic ganglion of the buschcricket Psorodonotus illyricus (tettigoniidae): computer-aided analysis of the end branch pattern.
    Ebendt R; Friedel J; Kalmring K
    J Neurobiol; 1994 Jan; 25(1):35-49. PubMed ID: 8113781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroanatomy and physiology of the complex tibial organ of an atympanate ensiferan, Ametrus tibialis (Brunner von Wattenwyl, 1888) (Gryllacrididae, Orthoptera) and evolutionary implications.
    Strauss J; Lakes-Harlan R
    Brain Behav Evol; 2008; 71(3):167-80. PubMed ID: 18230969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, receptor cell arrangement and function of the auditory organs in the foreleg tibia of three bushcricket species.
    Kalmring K; Rössler W; Ebenot R; Ahi J; Lakes R
    Acta Biol Hung; 1992; 43(1-4):441-9. PubMed ID: 1299131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera.
    Stritih N; Stumpner A
    Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, rhaphidophoridae).
    Stritih N
    J Comp Neurol; 2009 Oct; 516(6):519-32. PubMed ID: 19673004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of synapses on two ascending interneurones carrying frequency-specific information in the auditory system of the cricket: evidence for GABAergic inputs.
    Hardt M; Watson AH
    J Comp Neurol; 1994 Jul; 345(4):481-95. PubMed ID: 7962696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster.
    Kamikouchi A; Shimada T; Ito K
    J Comp Neurol; 2006 Nov; 499(3):317-56. PubMed ID: 16998934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets.
    Nebeling B
    J Exp Zool; 2000 Feb; 286(3):219-30. PubMed ID: 10653961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of song frequency and receptor tuning in two closely related bushcricket species.
    Kalmring K; Rössler W; Jatho M; Hoffmann E
    Acta Biol Hung; 1995; 46(2-4):457-69. PubMed ID: 8853719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae).
    Strauss J; Lakes-Harlan R
    J Comp Neurol; 2008 Nov; 511(1):81-91. PubMed ID: 18729154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the physiology of the auditory receptor organs in Gryllus bimaculatus and Ephippiger ephippiger: CSD recordings within the auditory neuropiles.
    Nebeling B; Rössler W; Jatho M
    J Neurobiol; 1993 Apr; 24(4):447-55. PubMed ID: 8515250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The auditory-vibratory system of the bushcricket Polysarcus denticauda (Phaneropterinae, Tettigoniidae). I. Morphology of the complex tibial organs.
    Sickmann T; Kalmring K; Müller A
    Hear Res; 1997 Feb; 104(1-2):155-66. PubMed ID: 9119759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus transmission in the auditory receptor organs of the foreleg of bushcrickets (Tettigoniidae) I. The role of the tympana.
    Bangert M; Kalmring K; Sickmann T; Stephen R; Jatho M; Lakes-Harlan R
    Hear Res; 1998 Jan; 115(1-2):27-38. PubMed ID: 9472733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroanatomy of the complex tibial organ in the splay-footed cricket Comicus calcaris Irish 1986 (Orthoptera: Ensifera: Schizodactylidae).
    Strauss J; Lakes-Harlan R
    J Comp Neurol; 2010 Nov; 518(22):4567-80. PubMed ID: 20886622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. complex tibial organ.
    Nishino H; Field LH
    J Comp Neurol; 2003 Sep; 464(3):327-42. PubMed ID: 12900927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bimodal auditory-vibratory system of the thoracic ventral nerve cord in Locusta migratoria (Acrididae, Locustinae, Oedipodini).
    Bickmeyer U; Kalmring K; Halex H; Mücke A
    J Exp Zool; 1992 Dec; 264(4):381-94. PubMed ID: 1460436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central projections of auditory receptor neurons of crickets.
    Imaizumi K; Pollack GS
    J Comp Neurol; 2005 Dec; 493(3):439-47. PubMed ID: 16261528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of ensemble activity patterns of mechanosensory afferents in the cricket cercal sensory system with calcium imaging.
    Ogawa H; Cummins GI; Jacobs GA; Miller JP
    J Neurobiol; 2006 Feb; 66(3):293-307. PubMed ID: 16329129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.