These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8113781)

  • 21. Morphology and physiology of vibratory interneurons in the thoracic ganglia of the southern green stinkbug Nezara viridula (L.).
    Zorović M; Presern J; Cokl A
    J Comp Neurol; 2008 May; 508(2):365-81. PubMed ID: 18335563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primary afferent depolarization and frequency processing in auditory afferents.
    Baden T; Hedwig B
    J Neurosci; 2010 Nov; 30(44):14862-9. PubMed ID: 21048145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tonotopic organization of auditory receptors of the bushcricket pholidoptera griseoaptera (Tettigoniidae, decticinae).
    Stolting H; Stumpner A
    Cell Tissue Res; 1998 Nov; 294(2):377-86. PubMed ID: 9799453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transplantation of neurons reveals processing areas and rules for synaptic connectivity in the cricket nervous system.
    Killian KA; Merritt DJ; Murphey RK
    J Neurobiol; 1993 Sep; 24(9):1187-206. PubMed ID: 8409977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa.
    Shen JX
    Jpn J Physiol; 1993; 43 Suppl 1():S239-46. PubMed ID: 8271504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial organization of tettigoniid auditory receptors: insights from neuronal tracing.
    Strauß J; Lehmann GU; Lehmann AW; Lakes-Harlan R
    J Morphol; 2012 Nov; 273(11):1280-90. PubMed ID: 22807283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): intracellular evaluation.
    Navia B; Stout J; Atkins G
    J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):63-71. PubMed ID: 12589692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological analysis of the primary center receiving spatial information transferred by the waggle dance of honeybees.
    Ai H; Hagio H
    J Comp Neurol; 2013 Aug; 521(11):2570-84. PubMed ID: 23297020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auditory DUM neurons in a bush-cricket: A filter bank for carrier frequency.
    Lefebvre PC; Seifert M; Stumpner A
    J Comp Neurol; 2018 May; 526(7):1166-1182. PubMed ID: 29380378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behaviorally relevant burst coding in primary sensory neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2009 Aug; 102(2):1086-91. PubMed ID: 19515952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Embryonic development and evolutionary origin of the Orthopteran auditory organs.
    Meier T; Reichert H
    J Neurobiol; 1990 Jun; 21(4):592-610. PubMed ID: 2376731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basic organization principles of the VOR: lessons from frogs.
    Straka H; Dieringer N
    Prog Neurobiol; 2004 Jul; 73(4):259-309. PubMed ID: 15261395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Similar structural dimensions in bushcricket auditory organs in spite of different foreleg size: consequences for auditory tuning.
    Rössler W; Kalmring K
    Hear Res; 1994 Nov; 80(2):191-6. PubMed ID: 7896577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implanted embryonic sensory neurons project axons toward adult auditory brainstem neurons in roller drum and Stoppini co-cultures.
    Thonabulsombat C; Johansson S; Spenger C; Ulfendahl M; Olivius P
    Brain Res; 2007 Sep; 1170():48-58. PubMed ID: 17716633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embryonic development of the Drosophila brain. II. Pattern of glial cells.
    Hartenstein V; Nassif C; Lekven A
    J Comp Neurol; 1998 Dec; 402(1):32-47. PubMed ID: 9831044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Projection patterns of posterior dorsal unpaired median neurons of the locust subesophageal ganglion.
    Bräunig P; Burrows M
    J Comp Neurol; 2004 Oct; 478(2):164-75. PubMed ID: 15349977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal processing properties of auditory DUM neurons in a bush-cricket.
    Stumpner A; Lefebvre PC; Seifert M; Ostrowski TD
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Oct; 205(5):717-733. PubMed ID: 31327050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sounds, behaviour, and auditory receptors of the armoured ground cricket, Acanthoplus longipes.
    Kowalski K; Lakes-Harlan R
    J Insect Sci; 2010; 10():59. PubMed ID: 20569136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axonal projections of auditory cells with short and long response latencies in the medial geniculate nucleus: distinct topographies in the connection with the thalamic reticular nucleus.
    Kimura A; Imbe H; Donishi T
    Eur J Neurosci; 2009 Sep; 30(5):783-99. PubMed ID: 19712090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron.
    Ogawa H; Baba Y; Oka K
    Neurosci Lett; 2004 Apr; 358(3):185-8. PubMed ID: 15039112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.