These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 8114067)
1. Growth inhibition of Clostridium difficile by intestinal flora of infant faeces in continuous flow culture. Yamamoto-Osaki T; Kamiya S; Sawamura S; Kai M; Ozawa A J Med Microbiol; 1994 Mar; 40(3):179-87. PubMed ID: 8114067 [TBL] [Abstract][Full Text] [Related]
2. Effect of lactulose on short-chain fatty acids and lactate production and on the growth of faecal flora, with special reference to Clostridium difficile. Ito Y; Moriwaki H; Muto Y; Kato N; Watanabe K; Ueno K J Med Microbiol; 1997 Jan; 46(1):80-4. PubMed ID: 9003750 [TBL] [Abstract][Full Text] [Related]
3. An anaerobic continuous-flow culture model of interactions between intestinal microflora and Candida albicans. Kennedy MJ; Rogers AL; Yancey RJ Mycopathologia; 1988 Sep; 103(3):125-34. PubMed ID: 3057377 [TBL] [Abstract][Full Text] [Related]
4. Selected faecal bacteria and nutrients essential for antagonism of Salmonella typhimurium in anaerobic continuous flow cultures. Ushijima T; Seto A J Med Microbiol; 1991 Aug; 35(2):111-7. PubMed ID: 1875391 [TBL] [Abstract][Full Text] [Related]
5. In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Schoster A; Kokotovic B; Permin A; Pedersen PD; Dal Bello F; Guardabassi L Anaerobe; 2013 Apr; 20():36-41. PubMed ID: 23471038 [TBL] [Abstract][Full Text] [Related]
6. Elemental diet modulates the growth of Clostridium difficile in the gut flora. Iizuka M; Itou H; Konno S; Chihara J; Tobita M; Oyamada H; Toyoshima I; Sasaki K; Sato A; Horie Y; Watanabe S Aliment Pharmacol Ther; 2004 Jul; 20 Suppl 1():151-7. PubMed ID: 15298621 [TBL] [Abstract][Full Text] [Related]
7. New selective medium for isolating Clostridium difficile from faeces. Aspinall ST; Hutchinson DN J Clin Pathol; 1992 Sep; 45(9):812-4. PubMed ID: 1401214 [TBL] [Abstract][Full Text] [Related]
8. Faecal steroids and colorectal cancer: the effect of lactulose on faecal bacterial metabolism in a continuous culture model of the large intestine. Fadden K; Owen RW Eur J Cancer Prev; 1992 Feb; 1(2):113-27. PubMed ID: 1463973 [TBL] [Abstract][Full Text] [Related]
9. Effect of Streptococcus parvulus and Peptostreptococcus magnus on cytotoxin levels of Clostridium difficile in anaerobic continuous flow culture. Yamamoto T; Takahashi Y; Aiba Y; Ohnishi N; Ozawa A Microbiol Immunol; 1987; 31(10):949-58. PubMed ID: 3431487 [TBL] [Abstract][Full Text] [Related]
10. Bifidobacteria in the intestinal tract of infants: an in-vivo study. Bullen CL; Tearle PV; Willis AT J Med Microbiol; 1976 Aug; 9(3):325-33. PubMed ID: 8646 [TBL] [Abstract][Full Text] [Related]
11. [Intestinal flora and antibiotics]. Abély M Arch Pediatr; 2010 Jun; 17(6):859-60. PubMed ID: 20654929 [No Abstract] [Full Text] [Related]
12. Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rRNA targeted probes. Fallani M; Rigottier-Gois L; Aguilera M; Bridonneau C; Collignon A; Edwards CA; Corthier G; Doré J J Microbiol Methods; 2006 Oct; 67(1):150-61. PubMed ID: 16647148 [TBL] [Abstract][Full Text] [Related]
13. Separate isolation of Clostridium difficile spores and vegetative cells from the feces of newborn infants. Miyazaki S; Matsunaga T; Kawasaki K; Kobayashi I; Tada H; Yamaguchi K; Goto S Microbiol Immunol; 1992; 36(2):131-8. PubMed ID: 1584078 [TBL] [Abstract][Full Text] [Related]
14. [The influence of cefpirome on intestinal bacterial flora]. Iwata S; Ikeda M; Isohata E; Kin Y; Yokota T; Kusumoto Y; Sato Y; Akita H; Oikawa T; Sunakawa K Jpn J Antibiot; 1991 Jan; 44(1):62-83. PubMed ID: 2041149 [TBL] [Abstract][Full Text] [Related]
15. An in-vitro model of colonisation resistance to Clostridium difficile infection. Borriello SP; Barclay FE J Med Microbiol; 1986 Jun; 21(4):299-309. PubMed ID: 3723582 [TBL] [Abstract][Full Text] [Related]
16. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Jump RL; Pultz MJ; Donskey CJ Antimicrob Agents Chemother; 2007 Aug; 51(8):2883-7. PubMed ID: 17562803 [TBL] [Abstract][Full Text] [Related]
17. Clostridial pathogenicity in experimental necrotising enterocolitis in gnotobiotic quails and protective role of bifidobacteria. Butel MJ; Roland N; Hibert A; Popot F; Favre A; Tessedre AC; Bensaada M; Rimbault A; Szylit O J Med Microbiol; 1998 May; 47(5):391-9. PubMed ID: 9879939 [TBL] [Abstract][Full Text] [Related]
18. Growth of Candida albicans in normal and altered faecal flora in the model of continuous flow culture. Bernhardt H; Wellmer A; Zimmermann K; Knoke M Mycoses; 1995; 38(7-8):265-70. PubMed ID: 8559187 [TBL] [Abstract][Full Text] [Related]
19. Cytotoxic effects of children's faeces: relation to diarrhoea due to Clostridium difficile and other enteric pathogens. Kennedy E; Burke V; Pearman J; Robinson J; Gracey M Ann Trop Paediatr; 1991; 11(2):107-12. PubMed ID: 1715139 [TBL] [Abstract][Full Text] [Related]
20. Intestinal bacteria antagonistic to Clostridium difficile in mice. Itoh K; Lee WK; Kawamura H; Mitsuoka T; Magaribuchi T Lab Anim; 1987 Jan; 21(1):20-5. PubMed ID: 3560860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]