These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 811409)

  • 21. [Effect of sodium selenite on RNA synthesis in loach embryos].
    Abdullaev GB; Mekhtiev NKh; Abdullaev FI; Kafiani KA
    Biokhimiia; 1980 Jan; 45(1):98-102. PubMed ID: 6163484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of nuclear proteins in RNA synthesis.
    Auer G; Zetterberg A
    Exp Cell Res; 1972 Nov; 75(1):245-53. PubMed ID: 4673829
    [No Abstract]   [Full Text] [Related]  

  • 23. Post-transcriptional control of c-myc RNA during early development analyzed in vivo with a Xenopus-axolotl heterologous system.
    Andéol Y; Lefresne J; Simard C; Séguin C; Mouton C; Signoret J
    Differentiation; 1998 Jun; 63(2):69-79. PubMed ID: 9674116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progressive patterning precedes somite segmentation in the Mexican axolotl (Ambystoma mexicanum).
    Armstrong JB; Graveson AC
    Dev Biol; 1988 Mar; 126(1):1-6. PubMed ID: 3342928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of the early embryonic cytology and nucleic acid synthesis of Ambystoma mexicanum normal and o mutant embryos.
    Carroll CR
    J Exp Zool; 1974 Mar; 187(3):409-22. PubMed ID: 4820344
    [No Abstract]   [Full Text] [Related]  

  • 26. Further studies on the maternal effect of the o gene in the Mexican Axolotl.
    Briggs R
    J Exp Zool; 1972 Aug; 181(2):271-80. PubMed ID: 5047366
    [No Abstract]   [Full Text] [Related]  

  • 27. All-trans-retinoic acid and all-trans-retinoyl-beta-D-glucuronide alter the development of axolotl embryos (Ambystoma mexicanum) in vitro.
    Krätke R; Rühl R; Kirschbaum F; Nau H
    Arch Toxicol; 2000 May; 74(3):173-80. PubMed ID: 10877004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition by tryptophan of nucleolar RNA synthesis in salivary gland nuclei of Chironomus thummi.
    Gopalan HN; Robert M
    Experientia; 1979 Nov; 35(11):1501-3. PubMed ID: 510501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Relationship between mitotic phases at different stages of embryonic development of axolotl].
    Desnitskiĭ AG
    Ontogenez; 1976; 7(1):82-4. PubMed ID: 934593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA ligase in Axolotl egg: a model for study of gene activity control.
    Lefresne J; David JC; Signoret J
    Dev Biol; 1983 Apr; 96(2):324-30. PubMed ID: 6832475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of apparent transcription inhibition by methyl mercury in cerebellar neurons.
    Sarafian T; Verity MA
    J Neurochem; 1986 Aug; 47(2):625-31. PubMed ID: 2426403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of embryonic development in the unsequenced axolotl: Waves of transcriptomic upheaval and stability.
    Jiang P; Nelson JD; Leng N; Collins M; Swanson S; Dewey CN; Thomson JA; Stewart R
    Dev Biol; 2017 Jun; 426(2):143-154. PubMed ID: 27475628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppression of first cleavage in the Mexican axolotl (Ambystoma mexicanum) by heat shock or hydrostatic pressure.
    Gillespie LL; Armstrong JB
    J Exp Zool; 1981 Dec; 218(3):441-5. PubMed ID: 7338728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inter- and intramyotomal gap junctions in the axolotl embryo.
    Keeter JS; Pappas GD; Model PG
    Dev Biol; 1975 Jul; 45(1):21-33. PubMed ID: 1181218
    [No Abstract]   [Full Text] [Related]  

  • 35. Experimental evidence for a proteinaceous presegmental wave required for morphogenesis of axolotl mesoderm.
    Gillespie LL; Armstrong JB; Steinberg MS
    Dev Biol; 1985 Jan; 107(1):220-6. PubMed ID: 3965323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of transfer RNA during the synchronous nuclear division cycle in Physarum polycephalum.
    Fink K; Turnock G
    Eur J Biochem; 1977 Oct; 80(1):93-6. PubMed ID: 336369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage.
    Newport J; Kirschner M
    Cell; 1982 Oct; 30(3):675-86. PubMed ID: 6183003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular biology of heart development in the Mexican axolotl, Ambystoma mexicanum.
    Lemanski LF; Zajdel RW; Nakasugawa M; Bhatia R; Spinner BJ; Fransen ME; Gaur AF; McLean MD; Lemanski SL; Dube DK
    Tsitologiia; 1997; 39(10):918-27. PubMed ID: 9505339
    [No Abstract]   [Full Text] [Related]  

  • 39. [Nuclear behavior of embryonic cells and growing oocytes from the clawed toad in the cytoplasm of maturing axolotl oocytes].
    Nikitina LA
    Ontogenez; 1984; 15(5):535-8. PubMed ID: 6504501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Desynchronization of cell division during the early development of the axoloty, loach and salmon].
    Dondua AK; Rott NN; Gorodilov IuN
    Ontogenez; 1977; 8(1):11-20. PubMed ID: 882238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.