These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 8115448)
1. Plastid engineering in land plants: a conservative genome is open to change. Maliga P; Carrer H; Kanevski I; Staub J; Svab Z Philos Trans R Soc Lond B Biol Sci; 1993 Nov; 342(1301):203-8. PubMed ID: 8115448 [TBL] [Abstract][Full Text] [Related]
2. Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Kode V; Mudd EA; Iamtham S; Day A Plant J; 2006 Jun; 46(5):901-9. PubMed ID: 16709203 [TBL] [Abstract][Full Text] [Related]
3. Removal of antibiotic resistance genes from transgenic tobacco plastids. Iamtham S; Day A Nat Biotechnol; 2000 Nov; 18(11):1172-6. PubMed ID: 11062436 [TBL] [Abstract][Full Text] [Related]
4. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Khan MS; Maliga P Nat Biotechnol; 1999 Sep; 17(9):910-5. PubMed ID: 10471936 [TBL] [Abstract][Full Text] [Related]
5. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Svab Z; Maliga P Proc Natl Acad Sci U S A; 1993 Feb; 90(3):913-7. PubMed ID: 8381537 [TBL] [Abstract][Full Text] [Related]
6. Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Lutz KA; Svab Z; Maliga P Nat Protoc; 2006; 1(2):900-10. PubMed ID: 17406323 [TBL] [Abstract][Full Text] [Related]
7. Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Arai Y; Shikanai T; Doi Y; Yoshida S; Yamaguchi I; Nakashita H Plant Cell Physiol; 2004 Sep; 45(9):1176-84. PubMed ID: 15509840 [TBL] [Abstract][Full Text] [Related]
8. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Huang FC; Klaus SM; Herz S; Zou Z; Koop HU; Golds TJ Mol Genet Genomics; 2002 Sep; 268(1):19-27. PubMed ID: 12242495 [TBL] [Abstract][Full Text] [Related]
9. Transgenic plastids in basic research and plant biotechnology. Bock R J Mol Biol; 2001 Sep; 312(3):425-38. PubMed ID: 11563907 [TBL] [Abstract][Full Text] [Related]
10. Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Maliga P; Svab Z Methods Mol Biol; 2011; 701():37-50. PubMed ID: 21181523 [TBL] [Abstract][Full Text] [Related]
12. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Klaus SM; Huang FC; Golds TJ; Koop HU Nat Biotechnol; 2004 Feb; 22(2):225-9. PubMed ID: 14730316 [TBL] [Abstract][Full Text] [Related]
13. Transplastomics in Arabidopsis: progress toward developing an efficient method. Lutz KA; Azhagiri A; Maliga P Methods Mol Biol; 2011; 774():133-47. PubMed ID: 21822837 [TBL] [Abstract][Full Text] [Related]
14. New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Maliga P Photochem Photobiol Sci; 2005 Dec; 4(12):971-6. PubMed ID: 16307109 [TBL] [Abstract][Full Text] [Related]
15. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Meyers B; Zaltsman A; Lacroix B; Kozlovsky SV; Krichevsky A Biotechnol Adv; 2010; 28(6):747-56. PubMed ID: 20685387 [TBL] [Abstract][Full Text] [Related]
16. Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. de Vries J; Herzfeld T; Wackernagel W Mol Microbiol; 2004 Jul; 53(1):323-34. PubMed ID: 15225325 [TBL] [Abstract][Full Text] [Related]
17. Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. O'Neill C; Horváth GV; Horváth E; Dix PJ; Medgyesy P Plant J; 1993 May; 3(5):729-38. PubMed ID: 8397038 [TBL] [Abstract][Full Text] [Related]