These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 8117296)

  • 41. Unfolding a folding disease: folding, misfolding and aggregation of the marble brain syndrome-associated mutant H107Y of human carbonic anhydrase II.
    Almstedt K; Lundqvist M; Carlsson J; Karlsson M; Persson B; Jonsson BH; Carlsson U; Hammarström P
    J Mol Biol; 2004 Sep; 342(2):619-33. PubMed ID: 15327960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Purification and S value determination of acetylcholinesterase from electric organ of electric skate (Narke japonica) from the Nanhai Sea (author's transl)].
    Cai LW; Bo JY; Xu CM; He GZ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1981 Jun; 3(2):132-3. PubMed ID: 6458408
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of oxidative stress on stability and structure of neurofilament proteins.
    Gélinas S; Chapados C; Beauregard M; Gosselin I; Martinoli MG
    Biochem Cell Biol; 2000; 78(6):667-74. PubMed ID: 11206577
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy.
    Mizuguchi M; Arai M; Ke Y; Nitta K; Kuwajima K
    J Mol Biol; 1998; 283(1):265-77. PubMed ID: 9761689
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach.
    Poljsak B; Gazdag Z; Jenko-Brinovec S; Fujs S; Pesti M; Bélagyi J; Plesnicar S; Raspor P
    J Appl Toxicol; 2005; 25(6):535-48. PubMed ID: 16092082
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of a tetrameric G4 form of acetylcholinesterase from bovine brain: a comparison with the dimeric G2 form of the electric organ.
    Fuentes ME; Inestrosa NC
    Mol Cell Biochem; 1988 May; 81(1):53-64. PubMed ID: 3173345
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Membrane-promoted unfolding of acetylcholinesterase: a possible mechanism for insertion into the lipid bilayer.
    Shin I; Kreimer D; Silman I; Weiner L
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):2848-52. PubMed ID: 9096309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Inactivation of AMP-deaminase from white muscle of Cyprinus carpio in the systems with free radical oxidation].
    Husak VV; Lushchak VI
    Ukr Biokhim Zh (1999); 2007; 79(6):42-7. PubMed ID: 18712110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subunit heterogeneity of acetylcholinesterase.
    Chen YT; Rosenberry TL; Chang HW
    Arch Biochem Biophys; 1974 Apr; 161(2):479-87. PubMed ID: 4839042
    [No Abstract]   [Full Text] [Related]  

  • 50. Potentiation of oxidative damage to proteins by ultraviolet-A and protection by antioxidants.
    Hu ML; Tappel AL
    Photochem Photobiol; 1992 Sep; 56(3):357-63. PubMed ID: 1438570
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bactericidal Effects of Oxidative Stress Generated by EDTA-Fe and Hydrogen Peroxide.
    DU WN; Chen ST
    Biocontrol Sci; 2019; 24(2):97-101. PubMed ID: 31204361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative affinity chromatography of acetylcholinesterases from five vertebrate species.
    Vallette FM; Marsh DJ; Muller F; Massoulié J; Marçot B; Viel C
    J Chromatogr; 1983 Mar; 257(2):285-96. PubMed ID: 6853625
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Major component of acetylcholinesterase in Torpedo electroplax is not basal lamina associated.
    Viratelle OM; Bernhard SA
    Biochemistry; 1980 Oct; 19(22):4999-5007. PubMed ID: 7459321
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protective effect of L-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals.
    Tsakiris S; Angelogianni P; Schulpis KH; Stavridis JC
    Clin Biochem; 2000 Mar; 33(2):103-6. PubMed ID: 10751587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of inactivation of bacteriophage MS2 containing single-stranded RNA by ascorbic acid.
    Murata A; Uike M
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(5):347-54. PubMed ID: 827603
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The structure of the glycosylphosphatidylinositol anchor from Torpedo californica acetylcholinesterase.
    Mehlert A; Silman I; Homans SW; Ferguson MA
    Biochem Soc Trans; 1993 Feb; 21(1):43S. PubMed ID: 8449327
    [No Abstract]   [Full Text] [Related]  

  • 57. [Spontaneous conversion of native acetylcholinesterasic forms of the Gymnotus electric organ, to the globular form].
    Rieger F; Bon S; Massoulié J
    C R Acad Hebd Seances Acad Sci D; 1972 Mar; 274(11):1753-6. PubMed ID: 4624804
    [No Abstract]   [Full Text] [Related]  

  • 58. Multi-level regulation of acetylcholinesterase biosynthesis and maturation.
    Chatel JM; Anselmet A; Vallette FM; Massoulié J
    Biochem Soc Trans; 1994 Aug; 22(3):735-40. PubMed ID: 7821675
    [No Abstract]   [Full Text] [Related]  

  • 59. On the conditions for assaying acetylcholinesterase with 14C-acetylbetamethylcholine.
    Alid G; Orrego F
    TIT J Life Sci; 1973; 3(4):115-20. PubMed ID: 4806294
    [No Abstract]   [Full Text] [Related]  

  • 60. The effect of exposure of acetylcholinesterase to 2,450-MHz microwave radiation.
    Millar DB; Christopher JP; Hunter J; Yeandle SS
    Bioelectromagnetics; 1984; 5(2):165-72. PubMed ID: 6732873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.