These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8117656)

  • 1. Site-directed mutagenesis of a catalytic antibody: an arginine and a histidine residue play key roles.
    Stewart JD; Roberts VA; Thomas NR; Getzoff ED; Benkovic SJ
    Biochemistry; 1994 Mar; 33(8):1994-2003. PubMed ID: 8117656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM; Olender EH; Arvai AS; Koike CK; Canestrelli IL; Stewart JD; Benkovic SJ; Getzoff ED; Roberts VA
    J Mol Biol; 1999 Aug; 291(2):329-45. PubMed ID: 10438624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of an antibody-catalyzed reaction.
    Stewart JD; Krebs JF; Siuzdak G; Berdis AJ; Smithrud DB; Benkovic SJ
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7404-9. PubMed ID: 8052597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization.
    Miyashita H; Hara T; Tanimura R; Fukuyama S; Cagnon C; Kohara A; Fujii I
    J Mol Biol; 1997 Apr; 267(5):1247-57. PubMed ID: 9150409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of functionally important residues in the pyridoxal-5'-phosphate-dependent catalytic antibody 15A9.
    Mouratou B; Stetefeld J
    Biochemistry; 2004 Jun; 43(21):6612-9. PubMed ID: 15157094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct hydroxide attack is a plausible mechanism for amidase antibody 43C9.
    Chong LT; Bandyopadhyay P; Scanlan TS; Kuntz ID; Kollman PA
    J Comput Chem; 2003 Sep; 24(12):1371-7. PubMed ID: 12868101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization.
    Roberts VA; Stewart J; Benkovic SJ; Getzoff ED
    J Mol Biol; 1994 Jan; 235(3):1098-116. PubMed ID: 8289310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the 43C9 class of catalytic antibodies using a chain-shuffling approach.
    Miller GP; Posner BA; Benkovic SJ
    Bioorg Med Chem; 1997 Mar; 5(3):581-90. PubMed ID: 9113336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.
    Khangulov SV; Sossong TM; Ash DE; Dismukes GC
    Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of enantioselective proton transfer to carbon in catalytic antibody 14D9.
    Zheng L; Baumann U; Reymond JL
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3387-92. PubMed ID: 14988504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible hydrolysis mechanism of beta-naphthyl acetate catalyzed by antibodies.
    Yuan YR; Xia ZX; Yang CH; Yang BH; Yeh M
    Cell Res; 1998 Sep; 8(3):219-30. PubMed ID: 9791735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of catalytic antibody repertoire in autoimmune mice.
    Nishi Y
    J Immunol Methods; 2002 Nov; 269(1-2):213-33. PubMed ID: 12379363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innate antibody catalysis.
    Gololobov G; Sun M; Paul S
    Mol Immunol; 1999 Dec; 36(18):1215-22. PubMed ID: 10684961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of the broad substrate tolerance of the antibody 7B9-catalyzed hydrolysis of p-nitrobenzyl esters.
    Miyamoto N; Yoshimura M; Okubo Y; Suzuki-Nagata K; Tsumuraya T; Ito N; Fujii I
    Bioorg Med Chem; 2018 May; 26(8):1412-1417. PubMed ID: 29496413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a catalytic antibody with a serine protease active site.
    Zhou GW; Guo J; Huang W; Fletterick RJ; Scanlan TS
    Science; 1994 Aug; 265(5175):1059-64. PubMed ID: 8066444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z
    Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding.
    Marie-Claire C; Ruffet E; Antonczak S; Beaumont A; O'Donohue M; Roques BP; FourniƩ-Zaluski MC
    Biochemistry; 1997 Nov; 36(45):13938-45. PubMed ID: 9374873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential role of arginine 235 in the substrate-binding of Lactobacillus plantarum D-lactate dehydrogenase.
    Taguchi H; Ohta T
    J Biochem; 1994 May; 115(5):930-6. PubMed ID: 7961609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of Escherichia coli alkaline phosphatase by site-specific mutagenesis.
    Xu X; Qin XQ; Kantrowitz ER
    Biochemistry; 1994 Mar; 33(8):2279-84. PubMed ID: 8117685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.