These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 8117656)
21. Crystal structures and mutational analysis of the arginine-, lysine-, histidine-binding protein ArtJ from Geobacillus stearothermophilus. Implications for interactions of ArtJ with its cognate ATP-binding cassette transporter, Art(MP)2. Vahedi-Faridi A; Eckey V; Scheffel F; Alings C; Landmesser H; Schneider E; Saenger W J Mol Biol; 2008 Jan; 375(2):448-59. PubMed ID: 18022195 [TBL] [Abstract][Full Text] [Related]
22. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase. Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802 [TBL] [Abstract][Full Text] [Related]
23. The catalytic activity of a recombinant single chain variable fragment nucleic acid-hydrolysing antibody varies with fusion tag and expression host. Lee J; Kim M; Seo Y; Lee Y; Park H; Byun SJ; Kwon MH Arch Biochem Biophys; 2017 Nov; 633():110-117. PubMed ID: 28888872 [TBL] [Abstract][Full Text] [Related]
24. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B. Fukasawa KM; Hirose J; Hata T; Ono Y Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702 [TBL] [Abstract][Full Text] [Related]
25. Significance of Arg-107 and Glu-108 in the catalytic mechanism of human gamma-glutamyl transpeptidase. Identification by site-directed mutagenesis. Ikeda Y; Fujii J; Taniguchi N J Biol Chem; 1993 Feb; 268(6):3980-5. PubMed ID: 8095045 [TBL] [Abstract][Full Text] [Related]
26. Probing the importance of second sphere residues in an esterolytic antibody by phage display. Arkin MR; Wells JA J Mol Biol; 1998 Dec; 284(4):1083-94. PubMed ID: 9837728 [TBL] [Abstract][Full Text] [Related]
27. Escherichia coli ATP synthase alpha subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state. Le NP; Omote H; Wada Y; Al-Shawi MK; Nakamoto RK; Futai M Biochemistry; 2000 Mar; 39(10):2778-83. PubMed ID: 10704230 [TBL] [Abstract][Full Text] [Related]
28. Histidine-94 is the only important histidine residue in the melibiose permease of Escherichia coli. Pourcher T; Sarkar HK; Bassilana M; Kaback HR; Leblanc G Proc Natl Acad Sci U S A; 1990 Jan; 87(1):468-72. PubMed ID: 2404282 [TBL] [Abstract][Full Text] [Related]
29. Effects of changes in three catalytic residues on the relative stabilities of some of the intermediates and transition states in the citrate synthase reaction. Kurz LC; Nakra T; Stein R; Plungkhen W; Riley M; Hsu F; Drysdale GR Biochemistry; 1998 Jul; 37(27):9724-37. PubMed ID: 9657685 [TBL] [Abstract][Full Text] [Related]
30. The active-site arginine of S-adenosylmethionine synthetase orients the reaction intermediate. Reczkowski RS; Taylor JC; Markham GD Biochemistry; 1998 Sep; 37(39):13499-506. PubMed ID: 9753435 [TBL] [Abstract][Full Text] [Related]
31. Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903 [TBL] [Abstract][Full Text] [Related]
32. Melibiose permease of Escherichia coli: mutation of histidine-94 alters expression and stability rather than catalytic activity. Pourcher T; Bassilana M; Sarkar HK; Kaback HR; Leblanc G Biochemistry; 1992 Jun; 31(22):5225-31. PubMed ID: 1606146 [TBL] [Abstract][Full Text] [Related]
33. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site. Seebeck FP; Hilvert D J Am Chem Soc; 2005 Feb; 127(4):1307-12. PubMed ID: 15669871 [TBL] [Abstract][Full Text] [Related]
34. Evidence for the interaction of avian 3-hydroxy-3-methylglutaryl-CoA synthase histidine 264 with acetoacetyl-CoA. Misra I; Miziorko HM Biochemistry; 1996 Jul; 35(29):9610-6. PubMed ID: 8755743 [TBL] [Abstract][Full Text] [Related]
35. Molecular mechanisms of improvement of hydrolytic antibody 6D9 by site-directed mutagenesis. Takahashi-Ando N; Shimazaki K; Kakinuma H; Fujii I; Nishi Y J Biochem; 2006 Oct; 140(4):509-15. PubMed ID: 16921165 [TBL] [Abstract][Full Text] [Related]
36. The effect of replacing the conserved active-site residues His-264, Asp-312 and Arg-314 on the binding and catalytic properties of Escherichia coli citrate synthase. Man WJ; Li Y; O'Connor CD; Wilton DC Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):765-70. PubMed ID: 8010958 [TBL] [Abstract][Full Text] [Related]
37. Probing the role of arginines and histidines in the catalytic function and activation of yeast 3-phosphoglycerate kinase by site-directed mutagenesis. Sherman MA; Szpikowska BK; Dean SA; Mathiowetz AM; McQueen NL; Mas MT J Biol Chem; 1990 Jun; 265(18):10659-65. PubMed ID: 2191956 [TBL] [Abstract][Full Text] [Related]
38. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity. Johnson AR; Dekker EE Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838 [TBL] [Abstract][Full Text] [Related]
39. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
40. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase. Montero-Morán GM; Lara-González S; Alvarez-Añorve LI; Plumbridge JA; Calcagno ML Biochemistry; 2001 Aug; 40(34):10187-96. PubMed ID: 11513596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]