These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 8117656)
41. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Amara AA; Rehm BH Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980 [TBL] [Abstract][Full Text] [Related]
42. Evaluation by mutagenesis of the roles of His309, His315, and His319 in the coenzyme site of pig heart NADP-dependent isocitrate dehydrogenase. Huang YC; Colman RF Biochemistry; 2002 Apr; 41(17):5637-43. PubMed ID: 11969425 [TBL] [Abstract][Full Text] [Related]
43. Characterization of the structure and properties of the His 62-->Ala and Arg 38-->Ala mutants of yeast phosphoglycerate kinase: an investigation of the catalytic and activatory sites by site-directed mutagenesis and NMR. Sherman MA; Fairbrother WJ; Mas MT Protein Sci; 1992 Jun; 1(6):752-60. PubMed ID: 1304916 [TBL] [Abstract][Full Text] [Related]
44. Role of histidine 124 in the catalytic function of ribonuclease HI from Escherichia coli. Oda Y; Yoshida M; Kanaya S J Biol Chem; 1993 Jan; 268(1):88-92. PubMed ID: 8380173 [TBL] [Abstract][Full Text] [Related]
45. Mechanistic study of proton transfer and hysteresis in catalytic antibody 16E7 by site-directed mutagenesis and homology modeling. Zheng L; Manetsch R; Woggon WD; Baumann U; Reymond JL Bioorg Med Chem; 2005 Feb; 13(4):1021-9. PubMed ID: 15670909 [TBL] [Abstract][Full Text] [Related]
46. The roles of arginine 41 and tyrosine 76 in the coupling of DNA recognition to phosphodiester bond cleavage by DNase I: a study using site-directed mutagenesis. Doherty AJ; Worrall AF; Connolly BA J Mol Biol; 1995 Aug; 251(3):366-77. PubMed ID: 7650737 [TBL] [Abstract][Full Text] [Related]
47. Probing the mechanism and improving the rate of substrate-assisted catalysis in subtilisin BPN'. Carter P; Abrahmsén L; Wells JA Biochemistry; 1991 Jun; 30(25):6142-8. PubMed ID: 2059622 [TBL] [Abstract][Full Text] [Related]
48. Probing ligand recognition in the decarboxylase antibody 21D8: implications for the catalytic mechanism. Hotta K; Wilson IA; Hilvert D Biochemistry; 2002 Jan; 41(3):772-9. PubMed ID: 11790098 [TBL] [Abstract][Full Text] [Related]
49. Site-directed mutagenesis of proteolytic antibody light chain. Gao QS; Sun M; Rees AR; Paul S J Mol Biol; 1995 Nov; 253(5):658-64. PubMed ID: 7473741 [TBL] [Abstract][Full Text] [Related]
50. Crystal structure of an antigen-binding fragment bound to single-stranded DNA. Tanner JJ; Komissarov AA; Deutscher SL J Mol Biol; 2001 Dec; 314(4):807-22. PubMed ID: 11733999 [TBL] [Abstract][Full Text] [Related]
51. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis. Xu J; Song J; Yan F; Chu H; Luo J; Zhao Y; Cheng X; Luo G; Zheng Q; Wei J J Mol Recognit; 2009; 22(4):293-300. PubMed ID: 19277948 [TBL] [Abstract][Full Text] [Related]
52. Structure-function analysis and molecular modeling of DNase catalytic antibodies. Zein HS; Teixeira da Silva JA; Miyatake K Immunol Lett; 2010 Mar; 129(1):13-22. PubMed ID: 20097230 [TBL] [Abstract][Full Text] [Related]
53. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants. Li C; Montgomery MG; Mohammed F; Li JJ; Wood SP; Bugg TD J Mol Biol; 2005 Feb; 346(1):241-51. PubMed ID: 15663941 [TBL] [Abstract][Full Text] [Related]
54. Structural basis of the transition-state stabilization in antibody-catalyzed hydrolysis. Sakakura M; Takahashi H; Shimba N; Fujii I; Shimada I J Mol Biol; 2007 Mar; 367(1):133-47. PubMed ID: 17239396 [TBL] [Abstract][Full Text] [Related]
55. Role of His159 in yeast enolase catalysis. Vinarov DA; Nowak T Biochemistry; 1999 Sep; 38(37):12138-49. PubMed ID: 10508418 [TBL] [Abstract][Full Text] [Related]
56. Site-directed mutagenesis and biochemical analysis of the endogenous ligands in the ferrous active site of clavaminate synthase. The His-3 variant of the 2-His-1-carboxylate model. Khaleeli N; Busby RW; Townsend CA Biochemistry; 2000 Jul; 39(29):8666-73. PubMed ID: 10913275 [TBL] [Abstract][Full Text] [Related]
57. Kinetic and site-directed mutagenesis studies of prevotella intermedia acid phosphatase. Chen X; Ansai T; Barik S; Takehara T Protein Pept Lett; 2003 Feb; 10(1):53-9. PubMed ID: 12625826 [TBL] [Abstract][Full Text] [Related]
58. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis. Nakamura M; Nakajima T; Ohba Y; Yamauchi S; Lee BR; Ichishima E Biochem J; 2000 Sep; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969 [TBL] [Abstract][Full Text] [Related]
59. Triple mutated antibody scFv2F3 with high GPx activity: insights from MD, docking, MDFE, and MM-PBSA simulation. Luo Q; Zhang C; Miao L; Zhang D; Bai Y; Hou C; Liu J; Yan F; Mu Y; Luo G Amino Acids; 2013 Mar; 44(3):1009-19. PubMed ID: 23224825 [TBL] [Abstract][Full Text] [Related]
60. Site-Directed Chemical Mutations on Abzymes: Large Rate Accelerations in the Catalysis by Exchanging the Functionalized Small Nonprotein Components. Ishikawa F; Shirahashi M; Hayakawa H; Yamaguchi A; Hirokawa T; Tsumuraya T; Fujii I ACS Chem Biol; 2016 Oct; 11(10):2803-2811. PubMed ID: 27552288 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]