These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 8117658)
1. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Harrison DH; Bohren KM; Ringe D; Petsko GA; Gabbay KH Biochemistry; 1994 Mar; 33(8):2011-20. PubMed ID: 8117658 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of human aldehyde reductase: characterization of the active site pocket. Barski OA; Gabbay KH; Grimshaw CE; Bohren KM Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785 [TBL] [Abstract][Full Text] [Related]
3. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Bohren KM; Grimshaw CE; Lai CJ; Harrison DH; Ringe D; Petsko GA; Gabbay KH Biochemistry; 1994 Mar; 33(8):2021-32. PubMed ID: 8117659 [TBL] [Abstract][Full Text] [Related]
4. Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition. Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH Biochemistry; 1995 Nov; 34(44):14374-84. PubMed ID: 7578041 [TBL] [Abstract][Full Text] [Related]
5. The crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding. Ye Q; Hyndman D; Green NC; Li L; Jia Z; Flynn TG Chem Biol Interact; 2001 Jan; 130-132(1-3):651-8. PubMed ID: 11306083 [TBL] [Abstract][Full Text] [Related]
6. The alrestatin double-decker: binding of two inhibitor molecules to human aldose reductase reveals a new specificity determinant. Harrison DH; Bohren KM; Petsko GA; Ringe D; Gabbay KH Biochemistry; 1997 Dec; 36(51):16134-40. PubMed ID: 9405046 [TBL] [Abstract][Full Text] [Related]
8. Residues affecting the catalysis and inhibition of rat lens aldose reductase. Carper DA; Hohman TC; Old SE Biochim Biophys Acta; 1995 Jan; 1246(1):67-73. PubMed ID: 7811733 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis. Paidimuddala B; Mohapatra SB; Gummadi SN; Manoj N FEBS J; 2018 Dec; 285(23):4445-4464. PubMed ID: 30269423 [TBL] [Abstract][Full Text] [Related]
11. Probing flexibility and "induced-fit" phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations. Sotriffer CA; Krämer O; Klebe G Proteins; 2004 Jul; 56(1):52-66. PubMed ID: 15162486 [TBL] [Abstract][Full Text] [Related]
12. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Rondeau JM; Tête-Favier F; Podjarny A; Reymann JM; Barth P; Biellmann JF; Moras D Nature; 1992 Jan; 355(6359):469-72. PubMed ID: 1734286 [TBL] [Abstract][Full Text] [Related]
13. Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme. De Winter HL; von Itzstein M Biochemistry; 1995 Jul; 34(26):8299-308. PubMed ID: 7599122 [TBL] [Abstract][Full Text] [Related]
14. Aldose and aldehyde reductases: structure-function studies on the coenzyme and inhibitor-binding sites. El-Kabbani O; Old SE; Ginell SL; Carper DA Mol Vis; 1999 Sep; 5():20. PubMed ID: 10493777 [TBL] [Abstract][Full Text] [Related]
15. The structure of Apo R268A human aldose reductase: hinges and latches that control the kinetic mechanism. Bohren KM; Brownlee JM; Milne AC; Gabbay KH; Harrison DH Biochim Biophys Acta; 2005 May; 1748(2):201-12. PubMed ID: 15769597 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G; Krishna TS; Williams CH; Kuriyan J J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095 [TBL] [Abstract][Full Text] [Related]
17. A 'specificity' pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Urzhumtsev A; Tête-Favier F; Mitschler A; Barbanton J; Barth P; Urzhumtseva L; Biellmann JF; Podjarny A; Moras D Structure; 1997 May; 5(5):601-12. PubMed ID: 9195881 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen bonding interactions between aldose reductase complexed with NADP(H) and inhibitor tolrestat studied by molecular dynamics simulations and binding assay. Lee YS; Hodoscek M; Kador PF; Sugiyama K Chem Biol Interact; 2003 Feb; 143-144():307-16. PubMed ID: 12604217 [TBL] [Abstract][Full Text] [Related]
19. The crystal structure of the aldose reductase.NADPH binary complex. Borhani DW; Harter TM; Petrash JM J Biol Chem; 1992 Dec; 267(34):24841-7. PubMed ID: 1447221 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of aldose reductase by (2,6-dimethylphenylsulphonyl)nitromethane: possible implications for the nature of an inhibitor binding site and a cause of biphasic kinetics. Ward WH; Cook PN; Mirrlees DJ; Brittain DR; Preston J; Carey F; Tuffin DP; Howe R Adv Exp Med Biol; 1993; 328():301-11. PubMed ID: 8493907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]